BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26702874)

  • 1. Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy.
    Zou K; Gao Z; Deng Q; Luo Y; Zou L; Lu Y; Zhao W; Lin B
    Electrophoresis; 2016 Mar; 37(5-6):786-9. PubMed ID: 26702874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.
    Rong Z; Wang C; Wang J; Wang D; Xiao R; Wang S
    Biosens Bioelectron; 2016 Oct; 84():15-21. PubMed ID: 27149164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe₂O₃@Au nanoparticles.
    Lin Y; Xu G; Wei F; Zhang A; Yang J; Hu Q
    J Pharm Biomed Anal; 2016 Mar; 121():135-140. PubMed ID: 26808062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy.
    Tycova A; Prikryl J; Foret F
    Electrophoresis; 2017 Aug; 38(16):1977-1987. PubMed ID: 28432695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vertical flow microarray chip based on SERS nanotags for rapid and ultrasensitive quantification of α-fetoprotein and carcinoembryonic antigen.
    Zhang D; Huang L; Liu B; Ge Q; Dong J; Zhao X
    Mikrochim Acta; 2019 Oct; 186(11):699. PubMed ID: 31617008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters.
    Kadasala NR; Wei A
    Nanoscale; 2015 Jul; 7(25):10931-5. PubMed ID: 26060841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core-shell approach.
    Toma SH; Santos JJ; Araki K; Toma HE
    Anal Chim Acta; 2015 Jan; 855():70-5. PubMed ID: 25542091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a Carcinoembryonic Antigen Surface-Enhanced Raman Spectroscopy (SERS) Aptamer Sensor Based on the Silver Nanorod Array Chip.
    Li R; Li L; Zhang Y; Lin X; Guo H; Lin C; Feng J
    Appl Spectrosc; 2023 Feb; 77(2):170-177. PubMed ID: 36138574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen.
    Carneiro MCCG; Sousa-Castillo A; Correa-Duarte MA; Sales MGF
    Biosens Bioelectron; 2019 Dec; 146():111761. PubMed ID: 31614254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manual-slide-engaged paper chip for parallel SERS-immunoassay measurement of clenbuterol from swine hair.
    Zheng T; Gao Z; Luo Y; Liu X; Zhao W; Lin B
    Electrophoresis; 2016 Feb; 37(3):418-24. PubMed ID: 26395181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system.
    Kamińska A; Witkowska E; Winkler K; Dzięcielewski I; Weyher JL; Waluk J
    Biosens Bioelectron; 2015 Apr; 66():461-7. PubMed ID: 25497986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive detection of gastric cancer biomarkers
    Huang Y; Liu Z; Qin X; Liu J; Yang Y; Wei W
    Analyst; 2023 Jul; 148(14):3295-3305. PubMed ID: 37318011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe
    Xiang Y; Yang H; Guo X; Wu Y; Ying Y; Wen Y; Yang H
    Mikrochim Acta; 2018 Feb; 185(3):195. PubMed ID: 29594694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of beta-agonists in swine hair extract in multiplexed mode by surface-enhanced Raman spectroscopy and microfluidic paper.
    Dou B; Luo Y; Chen X; Shi B; Du Y; Gao Z; Zhao W; Lin B
    Electrophoresis; 2015 Feb; 36(3):485-7. PubMed ID: 25296903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A; Jana NR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):996-1003. PubMed ID: 25521159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles.
    Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres.
    Chon H; Lee S; Son SW; Oh CH; Choo J
    Anal Chem; 2009 Apr; 81(8):3029-34. PubMed ID: 19301845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.