These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26703163)

  • 1. Enhancing effect of phase coherence factor for improvement of spatial resolution in ultrasonic imaging.
    Hasegawa H
    J Med Ultrason (2001); 2016 Jan; 43(1):19-27. PubMed ID: 26703163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apodized adaptive beamformer.
    Hasegawa H
    J Med Ultrason (2001); 2017 Apr; 44(2):155-165. PubMed ID: 28084559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of subaperture beamforming on phase coherence imaging.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1779-90. PubMed ID: 25389157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
    Hasegawa H; Nagaoka R
    Ultrason Imaging; 2020 Jan; 42(1):27-40. PubMed ID: 31802696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of penetration of modified amplitude and phase estimation beamformer.
    Hasegawa H
    J Med Ultrason (2001); 2017 Jan; 44(1):3-11. PubMed ID: 27443916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-sensitive lateral motion estimator for measurement of artery-wall displacement--phantom study.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2450-62. PubMed ID: 19942531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial phantom study on estimation of speed of sound in medium using coherence among received echo signals.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2019 Jul; 46(3):297-307. PubMed ID: 30848399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of performance of minimum variance beamformer by introducing cross covariance estimate.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2020 Apr; 47(2):203-210. PubMed ID: 32078070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.
    Lindsey BD; Martin KH; Jiang X; Dayton PA
    Ultrasonics; 2016 Aug; 70():123-35. PubMed ID: 27161022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive beamforming applied to medical ultrasound imaging.
    Synnevåg JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1606-13. PubMed ID: 17703664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging.
    Yoon C; Lee Y; Chang JH; Song TK; Yoo Y
    Ultrasonics; 2011 Oct; 51(7):795-802. PubMed ID: 21459400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
    Qi Y; Wang Y; Yu J; Guo Y
    Biomed Eng Online; 2019 Apr; 18(1):48. PubMed ID: 31014338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation method for sound velocity distribution for high-resolution ultrasonic tomographic imaging.
    Abe K; Arakawa M; Kanai H
    J Med Ultrason (2001); 2019 Jan; 46(1):27-33. PubMed ID: 30430292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):576-88. PubMed ID: 15217235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular statistics vector for improving coherent plane wave compounding image in Fourier domain.
    Chen Y; Xiong Z; Kong Q; Ma X; Chen M; Lu C
    Ultrasonics; 2023 Feb; 128():106856. PubMed ID: 36242803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging.
    Asl BM; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1923-31. PubMed ID: 19811995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Self-adaptive beamforming method based on plane wave ultrasound imaging].
    Zhang L; Zhou H; Zheng Y; Gong X; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):843-8, 853. PubMed ID: 24059068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent ultrasonic Doppler tomography.
    Tsui CS; Liang HD; Halliwell M; Shere M; Braybrooke JP; Whipp E; Wells PN
    Ultrasound Med Biol; 2011 Apr; 37(4):642-50. PubMed ID: 21376452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporally smoothed coherence factor for ultrasound imaging.
    Xu M; Yang X; Ding M; Yuchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):182-90. PubMed ID: 24402905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.