BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26703259)

  • 1. A novel photoelectrochemical immunosensor by integration of nanobody and TiO₂ nanotubes for sensitive detection of serum cystatin C.
    Mi L; Wang P; Yan J; Qian J; Lu J; Yu J; Wang Y; Liu H; Zhu M; Wan Y; Liu S
    Anal Chim Acta; 2016 Jan; 902():107-114. PubMed ID: 26703259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel photoelectrochemical immunosensor by integration of nanobody and ZnO nanorods for sensitive detection of nucleoside diphosphatase kinase-A.
    Liu A; Yin K; Mi L; Ma M; Liu Y; Li Y; Wei W; Zhang Y; Liu S
    Anal Chim Acta; 2017 Jun; 973():82-90. PubMed ID: 28502431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein.
    An Y; Tang L; Jiang X; Chen H; Yang M; Jin L; Zhang S; Wang C; Zhang W
    Chemistry; 2010 Dec; 16(48):14439-46. PubMed ID: 21038326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing.
    Chen D; Zhang H; Li X; Li J
    Anal Chem; 2010 Mar; 82(6):2253-61. PubMed ID: 20163104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasensitive Cystatin C renal failure immunosensor based on a PPy/CNT electrochemical capacitor grafted on interdigitated electrode.
    Ferreira PAB; Araujo MCM; Prado CM; de Lima RA; Rodríguez BAG; Dutra RF
    Colloids Surf B Biointerfaces; 2020 May; 189():110834. PubMed ID: 32066088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free photoelectrochemical immunosensor for neutrophil gelatinase-associated lipocalin based on the use of nanobodies.
    Li H; Mu Y; Yan J; Cui D; Ou W; Wan Y; Liu S
    Anal Chem; 2015 Feb; 87(3):2007-15. PubMed ID: 25557870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSe(x)Te(1-x)/TiO2 nanotube structure-based label-free immunosensor.
    Kang Q; Yang L; Chen Y; Luo S; Wen L; Cai Q; Yao S
    Anal Chem; 2010 Dec; 82(23):9749-54. PubMed ID: 21058710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting.
    Das C; Roy P; Yang M; Jha H; Schmuki P
    Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical TiO
    Tian J; Li Y; Dong J; Huang M; Lu J
    Biosens Bioelectron; 2018 Jul; 110():1-7. PubMed ID: 29573621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a biotinylated cameloid-like antibody for lable-free detection of apolipoprotein B-100.
    Li H; Yan J; Ou W; Liu H; Liu S; Wan Y
    Biosens Bioelectron; 2015 Feb; 64():111-8. PubMed ID: 25203942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.
    Pang Y; Xu G; Zhang X; Lv J; Shi K; Zhai P; Xue Q; Wang X; Wu Y
    Dalton Trans; 2015 Oct; 44(40):17784-94. PubMed ID: 26400480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Small Single Domain Nanobody Binders for Sensitive Detection of Testosterone by Electrochemical Impedance Spectroscopy.
    Li G; Zhu M; Ma L; Yan J; Lu X; Shen Y; Wan Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13830-9. PubMed ID: 27196036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A photoelectrochemical immunosensor for tris(2,3-dibromopropyl) isocyanurate detection with a multiple hybrid CdTe/Au-TiO2 nanotube arrays.
    Feng H; Zhou L; Li J; Tran T T; Wang N; Yuan L; Yan Z; Cai Q
    Analyst; 2013 Oct; 138(19):5726-33. PubMed ID: 23900298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free photoelectrochemical immunosensor based on CdTe/CdS co-sensitized TiO2 nanotube array structure for octachlorostyrene detection.
    Cai J; Sheng P; Zhou L; Shi L; Wang N; Cai Q
    Biosens Bioelectron; 2013 Dec; 50():66-71. PubMed ID: 23835219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical determination of alkaline phosphatase activity based on a photo-excited electron transfer strategy.
    Tian J; Yang Y; Huang M; Zhou C; Lu J
    Talanta; 2019 May; 196():293-299. PubMed ID: 30683366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing.
    Liu S; Chen A
    Langmuir; 2005 Aug; 21(18):8409-13. PubMed ID: 16114950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical CdSe/TiO
    Qin C; Bai X; Zhang Y; Gao K
    Mikrochim Acta; 2018 May; 185(5):278. PubMed ID: 29725837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free photoelectrochemical immunoassay for alpha-fetoprotein detection based on TiO(2)/CdS hybrid.
    Wang GL; Xu JJ; Chen HY; Fu SZ
    Biosens Bioelectron; 2009 Dec; 25(4):791-6. PubMed ID: 19748773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.
    Sun L; Li J; Wang C; Li S; Lai Y; Chen H; Lin C
    J Hazard Mater; 2009 Nov; 171(1-3):1045-50. PubMed ID: 19632043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO₂ nanoparticles.
    Tu W; Dong Y; Lei J; Ju H
    Anal Chem; 2010 Oct; 82(20):8711-6. PubMed ID: 20857916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.