These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26703374)

  • 1. Differences in pedalling technique between road cyclists of different competitive levels.
    García-López J; Díez-Leal S; Ogueta-Alday A; Larrazabal J; Rodríguez-Marroyo JA
    J Sports Sci; 2016 Sep; 34(17):1619-26. PubMed ID: 26703374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effects of small changes in crank length on gross efficiency and pedalling technique during submaximal cycling.
    Ferrer-Roca V; Rivero-Palomo V; Ogueta-Alday A; Rodríguez-Marroyo JA; García-López J
    J Sports Sci; 2017 Jul; 35(14):1328-1335. PubMed ID: 27484153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling.
    Bini RR; Dagnese F; Rocha E; Silveira MC; Carpes FP; Mota CB
    Eur J Sport Sci; 2016 Aug; 16(5):553-9. PubMed ID: 26783692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of saddle setback on pedalling technique effectiveness in cycling.
    Menard M; Domalain M; Decatoire A; Lacouture P
    Sports Biomech; 2016 Nov; 15(4):462-72. PubMed ID: 27239728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence.
    Sanderson DJ; Martin PE; Honeyman G; Keefer J
    J Electromyogr Kinesiol; 2006 Dec; 16(6):642-9. PubMed ID: 16377214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mechanics of Seated and Nonseated Cycling at Very-High-Power Output: A Joint-Level Analysis.
    Wilkinson RD; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2020 Jul; 52(7):1585-1594. PubMed ID: 31996561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in body position on the bike during seated sprint cycling: Applications to bike fitting.
    Bini R; Daly L; Kingsley M
    Eur J Sport Sci; 2020 Feb; 20(1):35-42. PubMed ID: 31057063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment?
    Chapman A; Vicenzino B; Blanch P; Hodges P
    J Sci Med Sport; 2009 Jan; 12(1):31-4. PubMed ID: 18077215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of changing handgrip position on joint specific power and cycling kinematics in recreational and professional cyclists.
    Skovereng K; Aasvold LO; Ettema G
    PLoS One; 2020; 15(8):e0237768. PubMed ID: 32813742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of static and dynamic methods based on knee kinematics to determine optimal saddle height in cycling.
    Millour G; Duc S; Puel F; Bertucci W
    Acta Bioeng Biomech; 2019; 21(4):93-99. PubMed ID: 32022807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal analysis of 3D kinematic asymmetry in professional cycling during an incremental test to exhaustion.
    Pouliquen C; Nicolas G; Bideau B; Garo G; Megret A; Delamarche P; Bideau N
    J Sports Sci; 2018 Oct; 36(19):2155-2163. PubMed ID: 29381424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle force adaptation to changes in upper body position during seated sprint cycling.
    Bini RR; Daly L; Kingsley M
    J Sports Sci; 2019 Oct; 37(19):2270-2278. PubMed ID: 31177946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.
    Sanderson DJ
    J Sports Sci; 1991; 9(2):191-203. PubMed ID: 1895355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of body positions on the saddle on pedalling technique for cyclists and triathletes.
    Bini RR; Hume PA; Lanferdini FJ; Vaz MA
    Eur J Sport Sci; 2014; 14 Suppl 1():S413-20. PubMed ID: 24444236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute effects of small changes in antero-posterior shoe-cleat position on physiological and biomechanical variables in road cycling.
    Chartogne M; Millour G; García-López J; Duc S; Rodríguez-Marroyo JA; Pernía R; Bertucci W
    Sports Biomech; 2023 Apr; 22(4):510-521. PubMed ID: 35129429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional kinematic analysis and power output of elite flat-water kayakers.
    Bjerkefors A; Tarassova O; Rosén JS; Zakaria P; Arndt A
    Sports Biomech; 2018 Sep; 17(3):414-427. PubMed ID: 28929926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and biomechanical responses between seated and standing positions during distance‑based uphill time trials in elite cyclists.
    Bouillod A; Grappe F
    J Sports Sci; 2018 May; 36(10):1173-1178. PubMed ID: 28776487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.