These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 26703749)
1. Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. Seidenstuecker M; Kissling S; Ruehe J; Suedkamp NP; Mayr HO; Bernstein A J Funct Biomater; 2015 Dec; 6(4):1085-98. PubMed ID: 26703749 [TBL] [Abstract][Full Text] [Related]
2. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics. Seidenstuecker M; Ruehe J; Suedkamp NP; Serr A; Wittmer A; Bohner M; Bernstein A; Mayr HO Acta Biomater; 2017 Mar; 51():433-446. PubMed ID: 28104468 [TBL] [Abstract][Full Text] [Related]
3. Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier. Kissling S; Seidenstuecker M; Pilz IH; Suedkamp NP; Mayr HO; Bernstein A BMC Biotechnol; 2016 May; 16(1):44. PubMed ID: 27206764 [TBL] [Abstract][Full Text] [Related]
4. Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2. Ritschl L; Schilling P; Wittmer A; Bohner M; Bernstein A; Schmal H; Seidenstuecker M J Mater Sci Mater Med; 2023 Jul; 34(8):39. PubMed ID: 37498466 [TBL] [Abstract][Full Text] [Related]
5. Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior. Seidenstuecker M; Schmeichel T; Ritschl L; Vinke J; Schilling P; Schmal H; Bernstein A Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803101 [TBL] [Abstract][Full Text] [Related]
7. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. Florczyk SJ; Leung M; Jana S; Li Z; Bhattarai N; Huang JI; Hopper RA; Zhang M J Biomed Mater Res A; 2012 Dec; 100(12):3408-15. PubMed ID: 22767533 [TBL] [Abstract][Full Text] [Related]
8. Static versus vacuum cell seeding on high and low porosity ceramic scaffolds. Buizer AT; Veldhuizen AG; Bulstra SK; Kuijer R J Biomater Appl; 2014 Jul; 29(1):3-13. PubMed ID: 24327348 [TBL] [Abstract][Full Text] [Related]
9. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo. Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Toth JM; An HS; Lim TH; Ran Y; Weiss NG; Lundberg WR; Xu RM; Lynch KL Spine (Phila Pa 1976); 1995 Oct; 20(20):2203-10. PubMed ID: 8545713 [TBL] [Abstract][Full Text] [Related]
11. Release behavior of VAN from four types of CaP-ceramic granules using various loading methods at two different degrees of acidity. Faigle G; Bernstein A; Suedkamp NP; Mayr HO; Peters F; Huebner WD; Seidenstuecker M J Mater Sci Mater Med; 2017 Dec; 29(1):12. PubMed ID: 29285633 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules. Hsu YH; Turner IG; Miles AW J Mater Sci Mater Med; 2007 Oct; 18(10):1931-7. PubMed ID: 17554596 [TBL] [Abstract][Full Text] [Related]
13. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
14. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics. Nakamura S; Kobayashi T; Nakamura M; Itoh S; Yamashita K J Biomed Mater Res A; 2010 Jan; 92(1):267-75. PubMed ID: 19180523 [TBL] [Abstract][Full Text] [Related]
15. In vivo osteogenesis assay: a rapid method for quantitative analysis. Dennis JE; Konstantakos EK; Arm D; Caplan AI Biomaterials; 1998 Aug; 19(15):1323-8. PubMed ID: 9758032 [TBL] [Abstract][Full Text] [Related]
16. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. Hsu YH; Turner IG; Miles AW J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009 [TBL] [Abstract][Full Text] [Related]
17. Porous and porous-compact ceramics in orthopedics. Bieniek J; Swiecki Z Clin Orthop Relat Res; 1991 Nov; (272):88-94. PubMed ID: 1934757 [TBL] [Abstract][Full Text] [Related]
18. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. Radin SR; Ducheyne P J Biomed Mater Res; 1994 Nov; 28(11):1303-9. PubMed ID: 7829560 [TBL] [Abstract][Full Text] [Related]
19. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Bernstein A; Niemeyer P; Salzmann G; Südkamp NP; Hube R; Klehm J; Menzel M; von Eisenhart-Rothe R; Bohner M; Görz L; Mayr HO Acta Biomater; 2013 Jul; 9(7):7490-505. PubMed ID: 23528497 [TBL] [Abstract][Full Text] [Related]
20. Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Ducheyne P; Radin S; Heughebaert M; Heughebaert JC Biomaterials; 1990 May; 11(4):244-54. PubMed ID: 2383619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]