These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26703896)

  • 1. Latitude-based approach for detecting aberrations of hand, foot, and mouth disease epidemics.
    Tang JH; Chan TC; Shigematsu M; Hwang JS
    BMC Med Inform Decis Mak; 2015 Dec; 15():113. PubMed ID: 26703896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Trend of epidemics and variation of pathogens of hand, foot and mouth disease in China: a dynamic series analysis, 2008-2017].
    Zhang J
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Feb; 40(2):147-154. PubMed ID: 30744263
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of Meteorological and Geographical Factors on the Epidemics of Hand, Foot, and Mouth Disease in Island-Type Territory, East Asia.
    Lee CC; Tang JH; Hwang JS; Shigematsu M; Chan TC
    Biomed Res Int; 2015; 2015():805039. PubMed ID: 26290875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a Negative Binomial Regression Model for Early Warning at the Start of a Hand Foot Mouth Disease Epidemic in Dalian, Liaoning Province, China.
    An Q; Wu J; Fan X; Pan L; Sun W
    PLoS One; 2016; 11(6):e0157815. PubMed ID: 27348747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the Effect of Latitude on the Starting of Hand, Foot, and Mouth Disease Epidemic on Early Warning in Dalian, Liaoning Province, China.
    An Q; Yao W; Wu J; Pan L; Wang X
    Soc Work Public Health; 2020 Jul; 35(6):443-455. PubMed ID: 32870751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of a Kalman filter in the geographically weighted regression for modeling the transmission of hand, foot and mouth disease.
    Hu B; Qiu W; Xu C; Wang J
    BMC Public Health; 2020 Apr; 20(1):479. PubMed ID: 32276607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosted regression tree model-based assessment of the impacts of meteorological drivers of hand, foot and mouth disease in Guangdong, China.
    Zhang W; Du Z; Zhang D; Yu S; Hao Y
    Sci Total Environ; 2016 May; 553():366-371. PubMed ID: 26930310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influences of temperature on spatiotemporal trends of hand-foot-and-mouth disease in mainland China.
    Zhuang D; Hu W; Ren H; Ai W; Xu X
    Int J Environ Health Res; 2014; 24(1):1-10. PubMed ID: 23427794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of hand, foot, and mouth disease epidemics in Japan using a long short-term memory approach.
    Yoshida K; Fujimoto T; Muramatsu M; Shimizu H
    PLoS One; 2022; 17(7):e0271820. PubMed ID: 35900968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons between mild and severe cases of hand, foot and mouth disease in temporal trends: a comparative time series study from mainland China.
    Xiao X; Liao Q; Kenward MG; Zheng Y; Huang J; Yin F; Yu H; Li X
    BMC Public Health; 2016 Oct; 16(1):1109. PubMed ID: 27769194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Epidemiological features of hand, foot and mouth disease in China, 2008 - 2009].
    Chang ZR; Zhang J; Sun JL; Zhang WD; Wang ZJ
    Zhonghua Liu Xing Bing Xue Za Zhi; 2011 Jul; 32(7):676-80. PubMed ID: 21933538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking and predicting hand, foot, and mouth disease (HFMD) epidemics in China by Baidu queries.
    Xiao QY; Liu HJ; Feldman MW
    Epidemiol Infect; 2017 Jun; 145(8):1699-1707. PubMed ID: 28222831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemics and underlying factors of multiple-peak pattern on hand, foot and mouth disease inWenzhou, China.
    Dai CX; Wang Z; Wang WM; Li YQ; Wang KF
    Math Biosci Eng; 2019 Mar; 16(4):2168-2188. PubMed ID: 31137205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan.
    Sumi A; Toyoda S; Kanou K; Fujimoto T; Mise K; Kohei Y; Koyama A; Kobayashi N
    Epidemiol Infect; 2017 Oct; 145(14):2896-2911. PubMed ID: 28826420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China.
    Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X
    BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity of coxsackievirus A16 associated with hand, foot, and mouth disease epidemics in Japan from 1983 to 2003.
    Hosoya M; Kawasaki Y; Sato M; Honzumi K; Hayashi A; Hiroshima T; Ishiko H; Kato K; Suzuki H
    J Clin Microbiol; 2007 Jan; 45(1):112-20. PubMed ID: 17093028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spatiotemporal mixed model to assess the influence of environmental and socioeconomic factors on the incidence of hand, foot and mouth disease.
    Li L; Qiu W; Xu C; Wang J
    BMC Public Health; 2018 Feb; 18(1):274. PubMed ID: 29463224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Temporal and spatial clustering characteristics and changes of severe hand, foot, and mouth disease in mainland of China, from 2008 to 2013].
    Yu S; Zhou Z; Yang F; Xiao G; Ma J
    Zhonghua Liu Xing Bing Xue Za Zhi; 2014 Mar; 35(3):271-5. PubMed ID: 24831625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the transmissibility of hand, foot, and mouth disease by a dynamic model.
    Chen S; Yang D; Liu R; Zhao J; Yang K; Chen T
    Public Health; 2019 Sep; 174():42-48. PubMed ID: 31306888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An epidemic analysis of hand, foot, and mouth disease in Zunyi, China between 2012 and 2014.
    Zhang W; Huang B; She C; Liu Y; Tong H; Wang F; Wu K
    Saudi Med J; 2015 May; 36(5):593-8. PubMed ID: 25935181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.