These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26704137)

  • 1. Chinese Experiences on Orthokeratology.
    Xie P; Guo X
    Eye Contact Lens; 2016 Jan; 42(1):43-7. PubMed ID: 26704137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Sugimoto K
    Curr Eye Res; 2017 May; 42(5):713-720. PubMed ID: 27767354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of orthokeratology on the progression of low to moderate myopia in Chinese children.
    He M; Du Y; Liu Q; Ren C; Liu J; Wang Q; Li L; Yu J
    BMC Ophthalmol; 2016 Jul; 16():126. PubMed ID: 27464993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of parental decisions to use orthokeratology for myopia control in successful wearers.
    Wang X; Yang B; Liu L; Cho P
    Ophthalmic Physiol Opt; 2021 Jan; 41(1):3-12. PubMed ID: 33063901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact Lens Methods for Clinical Myopia Control.
    Turnbull PR; Munro OJ; Phillips JR
    Optom Vis Sci; 2016 Sep; 93(9):1120-6. PubMed ID: 27564516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parents' knowledge and perspective of optical methods for myopia control in children.
    Cheung SW; Lam C; Cho P
    Optom Vis Sci; 2014 Jun; 91(6):634-41. PubMed ID: 24811848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control effect of orthokeratology on axial length elongation in Chinese children with myopia.
    Zhu MJ; Feng HY; He XG; Zou HD; Zhu JF
    BMC Ophthalmol; 2014 Nov; 14():141. PubMed ID: 25417926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myopia and orthokeratology for myopia control.
    Cho P; Tan Q
    Clin Exp Optom; 2019 Jul; 102(4):364-377. PubMed ID: 30380591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Suzaki A
    Clin Exp Optom; 2015 Nov; 98(6):534-40. PubMed ID: 26283026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Orthokeratology in myopic children].
    Oleszczyńska-Prost E
    Klin Oczna; 2013; 115(1):40-3. PubMed ID: 23882738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stabilizing effect of orthokeratology lenses (ten-year follow-up results)].
    Tarutta EP; Verzhanskaya TY
    Vestn Oftalmol; 2017; 133(1):49-54. PubMed ID: 28291200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of myopia using orthokeratology lenses in Scandinavian children aged 6 to 12 years. Eighteen-month data from the Danish Randomized Study: Clinical study Of Near-sightedness; TReatment with Orthokeratology Lenses (CONTROL study).
    Jakobsen TM; Møller F
    Acta Ophthalmol; 2022 Mar; 100(2):175-182. PubMed ID: 34233094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fitting algorithm for alignment curve radius estimation using corneal elevation data in orthokeratology lens trial.
    Zhang L; Zhang Y; Liu Y; Wang K; Zhao M
    Cont Lens Anterior Eye; 2017 Dec; 40(6):401-407. PubMed ID: 28988643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Two Orthokeratology Lens Designs and Comparison of Their Optical Effects on the Cornea.
    Marcotte-Collard R; Simard P; Michaud L
    Eye Contact Lens; 2018 Sep; 44(5):322-329. PubMed ID: 29489498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Atropine with Orthokeratology for Myopia Control: Study Design and Preliminary Results.
    Tan Q; Ng AL; Cheng GP; Woo VC; Cho P
    Curr Eye Res; 2019 Jun; 44(6):671-678. PubMed ID: 30632410
    [No Abstract]   [Full Text] [Related]  

  • 16. Myopia control in children through refractive therapy gas permeable contact lenses: is it for real?
    Koffler BH; Sears JJ
    Am J Ophthalmol; 2013 Dec; 156(6):1076-1081.e1. PubMed ID: 24238200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Categorisation of myopia progression by change in refractive error and axial elongation and their impact on benefit of myopia control using orthokeratology.
    Cho P; Cheung SW; Boost MV
    PLoS One; 2020; 15(12):e0243416. PubMed ID: 33373370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of corneal pigmented arc with wide epithelial thickness map in orthokeratology-treated children using optical coherence tomography measurements.
    Huang PW; Yeung L; Sun CC; Chen HM; Peng SY; Chen YT; Liu CF
    Cont Lens Anterior Eye; 2020 Jun; 43(3):238-243. PubMed ID: 32143962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective Role of Orthokeratology in Reducing Risk of Rapid Axial Elongation: A Reanalysis of Data From the ROMIO and TO-SEE Studies.
    Cho P; Cheung SW
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1411-1416. PubMed ID: 28253404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.