BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26704140)

  • 21. Identification of quantitative trait Loci for lipid metabolism in rice seeds.
    Ying JZ; Shan JX; Gao JP; Zhu MZ; Shi M; Lin HX
    Mol Plant; 2012 Jul; 5(4):865-75. PubMed ID: 22147755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.
    Zou J; Katavic V; Giblin EM; Barton DL; MacKenzie SL; Keller WA; Hu X; Taylor DC
    Plant Cell; 1997 Jun; 9(6):909-23. PubMed ID: 9212466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana.
    Singer SD; Jayawardhane KN; Jiao C; Weselake RJ; Chen G
    Plant Cell Rep; 2021 Sep; 40(9):1647-1663. PubMed ID: 34215912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Kanai M; Mano S; Kondo M; Hayashi M; Nishimura M
    Plant Biotechnol J; 2016 May; 14(5):1241-50. PubMed ID: 26503031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana.
    Yano R; Takebayashi Y; Nambara E; Kamiya Y; Seo M
    Plant J; 2013 Jun; 74(5):815-28. PubMed ID: 23464703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism.
    Xie D; Dai Z; Yang Z; Tang Q; Deng C; Xu Y; Wang J; Chen J; Zhao D; Zhang S; Zhang S; Su J
    Plant Sci; 2019 Sep; 286():98-107. PubMed ID: 31300147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic control of storage oil synthesis in seeds of Arabidopsis.
    Hobbs DH; Flintham JE; Hills MJ
    Plant Physiol; 2004 Oct; 136(2):3341-9. PubMed ID: 15466222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds.
    Chen S; Lei Y; Xu X; Huang J; Jiang H; Wang J; Cheng Z; Zhang J; Song Y; Liao B; Li Y
    PLoS One; 2015; 10(8):e0136170. PubMed ID: 26302041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variation in oil content and fatty acid composition of the seed oil of Acacia species collected from the northwest zone of India.
    Khan R; Srivastava R; Khan MA; Alam P; Abdin MZ; Mahmooduzzafar
    J Sci Food Agric; 2012 Aug; 92(11):2310-5. PubMed ID: 22351513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aloe ferox seed: a potential source of oil for cosmetic and pharmaceutical use.
    Dangarembizi R; Chivandi E; Erlwanger K
    Nat Prod Commun; 2013 Mar; 8(3):411-4. PubMed ID: 23678824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.).
    Otyama PI; Chamberlin K; Ozias-Akins P; Graham MA; Cannon EKS; Cannon SB; MacDonald GE; Anglin NL
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34751378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm.
    Ting NC; Yaakub Z; Kamaruddin K; Mayes S; Massawe F; Sambanthamurthi R; Jansen J; Low LE; Ithnin M; Kushairi A; Arulandoo X; Rosli R; Chan KL; Amiruddin N; Sritharan K; Lim CC; Nookiah R; Amiruddin MD; Singh R
    BMC Genomics; 2016 Apr; 17():289. PubMed ID: 27079197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.).
    Sabir A; Unver A; Kara Z
    J Sci Food Agric; 2012 Jul; 92(9):1982-7. PubMed ID: 22271548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry.
    Li M; Baughman E; Roth MR; Han X; Welti R; Wang X
    Plant J; 2014 Jan; 77(1):160-72. PubMed ID: 24164626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seeds as oil factories.
    Baud S
    Plant Reprod; 2018 Sep; 31(3):213-235. PubMed ID: 29429143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus.
    Wang X; Long Y; Yin Y; Zhang C; Gan L; Liu L; Yu L; Meng J; Li M
    BMC Plant Biol; 2015 Mar; 15():91. PubMed ID: 25888376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Saskatoon berry ( Amelanchier alnifolia Nutt.) seed oil.
    Bakowska-Barczak AM; Schieber A; Kolodziejczyk P
    J Agric Food Chem; 2009 Jun; 57(12):5401-6. PubMed ID: 19449814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.
    Li X; Mei D; Liu Q; Fan J; Singh S; Green A; Zhou XR; Zhu LH
    Plant Biotechnol J; 2016 Jan; 14(1):323-31. PubMed ID: 25998013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils.
    Jorge N; da Silva AC; Malacrida CR
    Nat Prod Res; 2015; 29(24):2313-7. PubMed ID: 25697079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.
    Iven T; Hornung E; Heilmann M; Feussner I
    Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.