These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 26704172)
1. Photonic Flash Sintering of Ink-Jet-Printed Back Electrodes for Organic Photovoltaic Applications. Polino G; Shanmugam S; Bex GJ; Abbel R; Brunetti F; Di Carlo A; Andriessen R; Galagan Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):2325-35. PubMed ID: 26704172 [TBL] [Abstract][Full Text] [Related]
2. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes. Yu JS; Kim I; Kim JS; Jo J; Larsen-Olsen TT; Søndergaard RR; Hösel M; Angmo D; Jørgensen M; Krebs FC Nanoscale; 2012 Sep; 4(19):6032-40. PubMed ID: 22915093 [TBL] [Abstract][Full Text] [Related]
3. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Chung WH; Hwang HJ; Lee SH; Kim HS Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030 [TBL] [Abstract][Full Text] [Related]
4. Large-Area Inkjet-Printed Flexible Hybrid Electrodes with Photonic Sintered Silver Grids/High Conductive Polymer. Kant C; Mahmood S; Seetharaman M; Katiyar M Small Methods; 2024 Jan; 8(1):e2300638. PubMed ID: 37727075 [TBL] [Abstract][Full Text] [Related]
5. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Yu MH; Joo SJ; Kim HS Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291 [TBL] [Abstract][Full Text] [Related]
6. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
7. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics. Hwang YT; Chung WH; Jang YR; Kim HS ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337 [TBL] [Abstract][Full Text] [Related]
8. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Joo SJ; Hwang HJ; Kim HS Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116 [TBL] [Abstract][Full Text] [Related]
9. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
10. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
11. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Hwang HJ; Oh KH; Kim HS Sci Rep; 2016 Jan; 6():19696. PubMed ID: 26806215 [TBL] [Abstract][Full Text] [Related]
12. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Hwang HJ; Chung WH; Kim HS Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346 [TBL] [Abstract][Full Text] [Related]
13. Fully Coated Semitransparent Organic Solar Cells with a Doctor-Blade-Coated Composite Anode Buffer Layer of Phosphomolybdic Acid and PEDOT:PSS and a Spray-Coated Silver Nanowire Top Electrode. Ji G; Wang Y; Luo Q; Han K; Xie M; Zhang L; Wu N; Lin J; Xiao S; Li YQ; Luo LQ; Ma CQ ACS Appl Mater Interfaces; 2018 Jan; 10(1):943-954. PubMed ID: 29200264 [TBL] [Abstract][Full Text] [Related]
14. The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering. Hwang JY; Moon SJ J Nanosci Nanotechnol; 2013 Sep; 13(9):6145-9. PubMed ID: 24205617 [TBL] [Abstract][Full Text] [Related]
16. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861 [TBL] [Abstract][Full Text] [Related]
17. One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics. Altay BN; Turkani VS; Pekarovicova A; Fleming PD; Atashbar MZ; Bolduc M; Cloutier SG Sci Rep; 2021 Feb; 11(1):3393. PubMed ID: 33564062 [TBL] [Abstract][Full Text] [Related]
18. Microwave Sintering of Silver Nanoink for Radio Frequency Applications. Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662 [TBL] [Abstract][Full Text] [Related]
19. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. Kim M; Jee H; Lee J Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835606 [TBL] [Abstract][Full Text] [Related]
20. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink. Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]