These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26704386)

  • 1. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution.
    Wang P; Jiang X; Zhao J
    J Phys Condens Matter; 2016 Jan; 28(3):034004. PubMed ID: 26704386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simple Molecular Design Strategy for Two-Dimensional Covalent Organic Framework Capable of Visible-Light-Driven Water Splitting.
    Wan Y; Wang L; Xu H; Wu X; Yang J
    J Am Chem Soc; 2020 Mar; 142(9):4508-4516. PubMed ID: 32043354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of MOF/COF Hybrid Materials for Photocatalytic H
    Zhang FM; Sheng JL; Yang ZD; Sun XJ; Tang HL; Lu M; Dong H; Shen FC; Liu J; Lan YQ
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):12106-12110. PubMed ID: 30022581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Data-Driven Search of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Overall Water Splitting.
    Wan Y; Zhang J; Wang D; Sun P; Shi L; Li S; Zhang J; Yan X; Wu X
    J Phys Chem Lett; 2023 Aug; 14(33):7421-7432. PubMed ID: 37578905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution: Design, Strategy, and Structure-to-Performance Relationship.
    Lin Z; Guo J
    Macromol Rapid Commun; 2023 Jun; 44(11):e2200719. PubMed ID: 36222274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Covalent Organic Framework with Transition Metal Phosphide for Noble-Metal-Free Visible-Light-Driven Photocatalytic H
    Yan G; Sun X; Zhang K; Zhang Y; Li H; Dou Y; Yuan D; Huang H; Jia B; Li H; Ma T
    Small; 2022 Jun; 18(25):e2201340. PubMed ID: 35612000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Fully Conjugated Covalent Organic Frameworks for Efficient Photocatalytic Water Splitting.
    Wan Y; Sun P; Shi L; Yan X; Zhang X
    J Phys Chem Lett; 2023 Aug; 14(33):7411-7420. PubMed ID: 37578869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel quadrilateral-pore 2D-COFs as visible-light driven catalysts evaluated by the descriptor of integrated p
    Zhang R; Wang ZW; Yang ZD; Bai FQ
    Nanoscale; 2022 Nov; 14(42):15713-15723. PubMed ID: 36156669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting.
    Sick T; Hufnagel AG; Kampmann J; Kondofersky I; Calik M; Rotter JM; Evans A; Döblinger M; Herbert S; Peters K; Böhm D; Knochel P; Medina DD; Fattakhova-Rohlfing D; Bein T
    J Am Chem Soc; 2018 Feb; 140(6):2085-2092. PubMed ID: 29249151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Computational Screening of Novel Two-Dimensional Covalent Organic Frameworks for Efficient Photocatalytic Overall Water Splitting.
    Sheng L; Wang W; Wang J; Zhang W; Li Q; Yang J
    J Phys Chem Lett; 2024 May; 15(18):5016-5023. PubMed ID: 38695756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Porphyrin-Based Covalent-Organic Framework/PEG Composites: A Rational Strategy for Photocatalytic Hydrogen Evolution.
    Yao C; Wang S; Zha Y; Xu Y
    Macromol Rapid Commun; 2024 Sep; 45(17):e2400250. PubMed ID: 38837471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Conjugated 2D sp
    Cheng J; Wu Y; Zhang W; Zhang J; Wang L; Zhou M; Fan F; Wu X; Xu H
    Adv Mater; 2024 Feb; 36(6):e2305313. PubMed ID: 37818737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalysts for Visible Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide.
    Singh N; Yadav D; Mulay SV; Kim JY; Park NJ; Baeg JO
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14122-14131. PubMed ID: 33733735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution.
    Zhong Y; Dong W; Ren S; Li L
    Adv Mater; 2024 Jan; 36(1):e2308251. PubMed ID: 37781857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediate Formation of Macrocycles for Efficient Crystallization of 2D Covalent Organic Frameworks with Enhanced Photocatalytic Hydrogen Evolution.
    Wang K; Zhong Y; Dong W; Xiao Y; Ren S; Li L
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202304611. PubMed ID: 37227370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution.
    Li Y; Song X; Zhang G; Wang L; Liu Y; Chen W; Chen L
    ChemSusChem; 2022 Aug; 15(15):e202200901. PubMed ID: 35652127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Photocatalytic Overall Water Splitting of β-Ketoamine COFs through the N-C Site Synergistic Mechanism.
    Zhang R; Yang ZD; Yang Y; Zhang FM; Zhang G
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38038242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting.
    Luan BB; Chu X; Wang Y; Qiao X; Jiang Y; Zhang FM
    Adv Mater; 2024 Dec; 36(49):e2412653. PubMed ID: 39422373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations.
    Liu S; Tian M; Bu X; Tian H; Yang X
    Chemistry; 2021 May; 27(28):7738-7744. PubMed ID: 33788327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational modification of hydroxy-functionalized covalent organic frameworks for enhanced photocatalytic hydrogen peroxide evolution.
    Hu H; Tao Y; Wang D; Li C; Jiang Q; Shi Y; Wang J; Qin J; Zhou S; Kong Y
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):750-762. PubMed ID: 36193619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.