BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 26704468)

  • 1. Exosomes and nanotubes: Control of immune cell communication.
    McCoy-Simandle K; Hanna SJ; Cox D
    Int J Biochem Cell Biol; 2016 Feb; 71():44-54. PubMed ID: 26704468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication.
    Thayanithy V; O'Hare P; Wong P; Zhao X; Steer CJ; Subramanian S; Lou E
    Cell Commun Signal; 2017 Nov; 15(1):46. PubMed ID: 29132390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells.
    Thayanithy V; Babatunde V; Dickson EL; Wong P; Oh S; Ke X; Barlas A; Fujisawa S; Romin Y; Moreira AL; Downey RJ; Steer CJ; Subramanian S; Manova-Todorova K; Moore MAS; Lou E
    Exp Cell Res; 2014 Apr; 323(1):178-188. PubMed ID: 24468420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune Cell Connection by Tunneling Nanotubes: The Impact of Intercellular Cross-Talk on the Immune Response and Its Therapeutic Applications.
    Zhu C; Shi Y; You J
    Mol Pharm; 2021 Mar; 18(3):772-786. PubMed ID: 33529022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions.
    Lock JT; Parker I; Smith IF
    Cell Calcium; 2016 Oct; 60(4):266-72. PubMed ID: 27388952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication.
    Jansens RJJ; Van den Broeck W; De Pelsmaeker S; Lamote JAS; Van Waesberghe C; Couck L; Favoreel HW
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28747498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.
    Wittig D; Wang X; Walter C; Gerdes HH; Funk RH; Roehlecke C
    PLoS One; 2012; 7(3):e33195. PubMed ID: 22457742
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Jahnke R; Matthiesen S; Zaeck LM; Finke S; Knittler MR
    Microbiol Spectr; 2022 Dec; 10(6):e0281722. PubMed ID: 36219107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
    Sahu P; Jena SR; Samanta L
    Curr Cancer Drug Targets; 2018; 18(6):514-521. PubMed ID: 29189162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions.
    Ariazi J; Benowitz A; De Biasi V; Den Boer ML; Cherqui S; Cui H; Douillet N; Eugenin EA; Favre D; Goodman S; Gousset K; Hanein D; Israel DI; Kimura S; Kirkpatrick RB; Kuhn N; Jeong C; Lou E; Mailliard R; Maio S; Okafo G; Osswald M; Pasquier J; Polak R; Pradel G; de Rooij B; Schaeffer P; Skeberdis VA; Smith IF; Tanveer A; Volkmann N; Wu Z; Zurzolo C
    Front Mol Neurosci; 2017; 10():333. PubMed ID: 29089870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosome secretion: molecular mechanisms and roles in immune responses.
    Bobrie A; Colombo M; Raposo G; Théry C
    Traffic; 2011 Dec; 12(12):1659-68. PubMed ID: 21645191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wiring through tunneling nanotubes--from electrical signals to organelle transfer.
    Abounit S; Zurzolo C
    J Cell Sci; 2012 Mar; 125(Pt 5):1089-98. PubMed ID: 22399801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells.
    Mahadik P; Patwardhan S
    Arch Biochem Biophys; 2023 Jul; 742():109624. PubMed ID: 37146866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread.
    Okafo G; Prevedel L; Eugenin E
    Sci Rep; 2017 Nov; 7(1):16660. PubMed ID: 29192225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control.
    Dubois F; Jean-Jacques B; Roberge H; Bénard M; Galas L; Schapman D; Elie N; Goux D; Keller M; Maille E; Bergot E; Zalcman G; Levallet G
    Cell Commun Signal; 2018 Oct; 16(1):66. PubMed ID: 30305100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
    Kimura S; Hase K; Ohno H
    Exp Cell Res; 2012 Aug; 318(14):1699-706. PubMed ID: 22652450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lost in translation: applying 2D intercellular communication via tunneling nanotubes in cell culture to physiologically relevant 3D microenvironments.
    Lou E; O'Hare P; Subramanian S; Steer CJ
    FEBS J; 2017 Mar; 284(5):699-707. PubMed ID: 27801976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications.
    Mittal R; Karhu E; Wang JS; Delgado S; Zukerman R; Mittal J; Jhaveri VM
    J Cell Physiol; 2019 Feb; 234(2):1130-1146. PubMed ID: 30206931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunneling nanotube-transmitted mechanical signal and its cellular response.
    Wang Y; Han X; Deng L; Wang X
    Biochem Biophys Res Commun; 2024 Jan; 693():149368. PubMed ID: 38091838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvesicles and exosomes for intracardiac communication.
    Sluijter JP; Verhage V; Deddens JC; van den Akker F; Doevendans PA
    Cardiovasc Res; 2014 May; 102(2):302-11. PubMed ID: 24488559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.