BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 26704769)

  • 1. Human Proteomic Variation Revealed by Combining RNA-Seq Proteogenomics and Global Post-Translational Modification (G-PTM) Search Strategy.
    Cesnik AJ; Shortreed MR; Sheynkman GM; Frey BL; Smith LM
    J Proteome Res; 2016 Mar; 15(3):800-8. PubMed ID: 26704769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic variations of esophageal squamous cell carcinoma revealed by combining RNA-seq proteogenomics and G-PTM search strategy.
    Ramesh P; Nagarajan V; Khanchandani V; Desai VK; Niranjan V
    Heliyon; 2020 Aug; 6(8):e04813. PubMed ID: 32913912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spritz: A Proteogenomic Database Engine.
    Cesnik AJ; Miller RM; Ibrahim K; Lu L; Millikin RJ; Shortreed MR; Frey BL; Smith LM
    J Proteome Res; 2021 Apr; 20(4):1826-1834. PubMed ID: 32967423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Post-Translational Modification Discovery.
    Li Q; Shortreed MR; Wenger CD; Frey BL; Schaffer LV; Scalf M; Smith LM
    J Proteome Res; 2017 Apr; 16(4):1383-1390. PubMed ID: 28248113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Global Post-translational Modification Discovery with MetaMorpheus.
    Solntsev SK; Shortreed MR; Frey BL; Smith LM
    J Proteome Res; 2018 May; 17(5):1844-1851. PubMed ID: 29578715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search.
    Shortreed MR; Wenger CD; Frey BL; Sheynkman GM; Scalf M; Keller MP; Attie AD; Smith LM
    J Proteome Res; 2015 Nov; 14(11):4714-20. PubMed ID: 26418581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.
    Park GW; Hwang H; Kim KH; Lee JY; Lee HK; Park JY; Ji ES; Park SR; Yates JR; Kwon KH; Park YM; Lee HJ; Paik YK; Kim JY; Yoo JS
    J Proteome Res; 2016 Nov; 15(11):4082-4090. PubMed ID: 27537616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics in non-human primates: utilizing RNA-Seq data to improve protein identification by mass spectrometry in vervet monkeys.
    Proffitt JM; Glenn J; Cesnik AJ; Jadhav A; Shortreed MR; Smith LM; Kavanagh K; Cox LA; Olivier M
    BMC Genomics; 2017 Nov; 18(1):877. PubMed ID: 29132314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIPI2: Sensitive Tag-Based Database Search to Identify Peptides with Multiple Post-translational Modifications.
    Lai S; Zhao P; Zhou C; Li N; Yu W
    J Proteome Res; 2024 Jun; 23(6):1960-1969. PubMed ID: 38770571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Galaxy-P to leverage RNA-Seq for the discovery of novel protein variations.
    Sheynkman GM; Johnson JE; Jagtap PD; Shortreed MR; Onsongo G; Frey BL; Griffin TJ; Smith LM
    BMC Genomics; 2014 Aug; 15(1):703. PubMed ID: 25149441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation.
    Sheynkman GM; Shortreed MR; Cesnik AJ; Smith LM
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):521-45. PubMed ID: 27049631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PIPI: PTM-Invariant Peptide Identification Using Coding Method.
    Yu F; Li N; Yu W
    J Proteome Res; 2016 Dec; 15(12):4423-4435. PubMed ID: 27748123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteogenomics of Malignant Melanoma Cell Lines: The Effect of Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun Proteomics.
    Lobas AA; Pyatnitskiy MA; Chernobrovkin AL; Ilina IY; Karpov DS; Solovyeva EM; Kuznetsova KG; Ivanov MV; Lyssuk EY; Kliuchnikova AA; Voronko OE; Larin SS; Zubarev RA; Gorshkov MV; Moshkovskii SA
    J Proteome Res; 2018 May; 17(5):1801-1811. PubMed ID: 29619825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells.
    Li Y; Wang X; Cho JH; Shaw TI; Wu Z; Bai B; Wang H; Zhou S; Beach TG; Wu G; Zhang J; Peng J
    J Proteome Res; 2016 Jul; 15(7):2309-20. PubMed ID: 27225868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hunting for unexpected post-translational modifications by spectral library searching with tier-wise scoring.
    Ma CW; Lam H
    J Proteome Res; 2014 May; 13(5):2262-71. PubMed ID: 24661115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Methods in Mass Spectrometry-Based Proteomics.
    Li S; Tang H
    Adv Exp Med Biol; 2016; 939():63-89. PubMed ID: 27807744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry.
    Mnatsakanyan R; Shema G; Basik M; Batist G; Borchers CH; Sickmann A; Zahedi RP
    Expert Rev Proteomics; 2018 Jun; 15(6):515-535. PubMed ID: 29893147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Posttranslational Modifications in Arabidopsis Proteins and Metabolic Pathways Using the FAT-PTM Database.
    Blea MN; Wallace IS
    Methods Mol Biol; 2022; 2499():145-154. PubMed ID: 35696079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.