These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26705098)

  • 1. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.
    Odahara T; Odahara K
    Protein Expr Purif; 2016 Apr; 120():72-86. PubMed ID: 26705098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Various salts employed as precipitant in combination with polyethylene glycol in protein/detergent particle association.
    Odahara T; Odahara K
    Heliyon; 2018 Dec; 4(12):e01073. PubMed ID: 30603706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of PEG on detergent micelles: implications for the crystallization of integral membrane proteins.
    Hitscherich C; Aseyev V; Wiencek J; Loll PJ
    Acta Crystallogr D Biol Crystallogr; 2001 Jul; 57(Pt 7):1020-9. PubMed ID: 11418772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphiles modify the properties of detergent solutions used in crystallization of membrane proteins.
    Rosenow MA; Williams JC; Allen JP
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):925-7. PubMed ID: 11375531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.
    Chae PS; Bae HE; Das M
    Chem Commun (Camb); 2014 Oct; 50(82):12300-3. PubMed ID: 25178798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New ganglio-tripod amphiphiles (TPAs) for membrane protein solubilization and stabilization: implications for detergent structure-property relationships.
    Chae PS; Bae HE; Ehsan M; Hussain H; Kim JW
    Org Biomol Chem; 2014 Nov; 12(42):8480-7. PubMed ID: 25227873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.
    Odahara T; Odahara K
    Data Brief; 2016 Jun; 7():1283-7. PubMed ID: 27135050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins.
    Tribet C; Diab C; Dahmane T; Zoonens M; Popot JL; Winnik FM
    Langmuir; 2009 Nov; 25(21):12623-34. PubMed ID: 19594168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase separation of biomolecules in polyoxyethylene glycol nonionic detergents.
    Sánchez-Ferrer A; Bru R; García-Carmona F
    Crit Rev Biochem Mol Biol; 1994; 29(4):275-313. PubMed ID: 8001397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins.
    Koszelak-Rosenblum M; Krol A; Mozumdar N; Wunsch K; Ferin A; Cook E; Veatch CK; Nagel R; Luft JR; Detitta GT; Malkowski MG
    Protein Sci; 2009 Sep; 18(9):1828-39. PubMed ID: 19554626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation of nonionic detergents by salt addition and its application to membrane proteins.
    Fricke B
    Anal Biochem; 1993 Jul; 212(1):154-9. PubMed ID: 8368489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalization of membrane protein crystallization with polyethylene glycol using a simple depletion model.
    Tanaka S; Ataka M; Onuma K; Kubota T
    Biophys J; 2003 May; 84(5):3299-306. PubMed ID: 12719259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization of mu-opioid receptors enriched from bovine brain membranes.
    Sastry KV; Yadgiri B; Reddy JM; Janardanasarma MK
    Indian J Biochem Biophys; 2002 Feb; 39(1):60-5. PubMed ID: 22896890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and solubility of integral membrane proteins from photosynthetic bacteria solubilized in different detergents.
    Odahara T
    Biochim Biophys Acta; 2004 Jan; 1660(1-2):80-92. PubMed ID: 14757223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detergent-aided polymersome preparation.
    Marsden HR; Quer CB; Sanchez EY; Gabrielli L; Jiskoot W; Kros A
    Biomacromolecules; 2010 Apr; 11(4):833-8. PubMed ID: 20329745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characterization of plasma membrane-bound tubulin of cauliflower using Triton X-114 fractionation.
    Sonesson A; Berglund M; Staxén I; Widell S
    Plant Physiol; 1997 Nov; 115(3):1001-7. PubMed ID: 9390434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A colorimetric determination for glycosidic and bile salt-based detergents: applications in membrane protein research.
    Urbani A; Warne T
    Anal Biochem; 2005 Jan; 336(1):117-24. PubMed ID: 15582566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water on hydrophobic surfaces: mechanistic modeling of polyethylene glycol-induced protein precipitation.
    Großhans S; Wang G; Hubbuch J
    Bioprocess Biosyst Eng; 2019 Apr; 42(4):513-520. PubMed ID: 30535587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure-activity relationship models.
    Hämmerling F; Ladd Effio C; Andris S; Kittelmann J; Hubbuch J
    J Biotechnol; 2017 Jan; 241():87-97. PubMed ID: 27876584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the interaction between the violaxanthin cycle enzyme zeaxanthin epoxidase and the thylakoid membrane.
    Schaller S; Wilhelm C; Strzałka K; Goss R
    J Photochem Photobiol B; 2012 Sep; 114():119-25. PubMed ID: 22705077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.