BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26705195)

  • 1. The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease.
    Shen BW; Lambert A; Walker BC; Stoddard BL; Kaiser BK
    J Mol Biol; 2016 Jan; 428(1):206-220. PubMed ID: 26705195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases.
    McMurrough TA; Brown CM; Zhang K; Hausner G; Junop MS; Gloor GB; Edgell DR
    Nucleic Acids Res; 2018 Dec; 46(22):11990-12007. PubMed ID: 30357419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not.
    Singh P; Tripathi P; Muniyappa K
    Protein Sci; 2010 Jan; 19(1):111-23. PubMed ID: 19937653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering.
    Marcaida MJ; Prieto J; Redondo P; Nadra AD; Alibés A; Serrano L; Grizot S; Duchateau P; Pâques F; Blanco FJ; Montoya G
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):16888-93. PubMed ID: 18974222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of new homing endonuclease specificities at individual target site positions.
    Sussman D; Chadsey M; Fauce S; Engel A; Bruett A; Monnat R; Stoddard BL; Seligman LM
    J Mol Biol; 2004 Sep; 342(1):31-41. PubMed ID: 15313605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase.
    Longo A; Leonard CW; Bassi GS; Berndt D; Krahn JM; Hall TM; Weeks KM
    Nat Struct Mol Biol; 2005 Sep; 12(9):779-87. PubMed ID: 16116439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of customized meganucleases via in vitro compartmentalization and in cellulo optimization.
    Takeuchi R; Choi M; Stoddard BL
    Methods Mol Biol; 2015; 1239():105-32. PubMed ID: 25408403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying a covarying protein-DNA interaction changes substrate preference of a site-specific endonuclease.
    Laforet M; McMurrough TA; Vu M; Brown CM; Zhang K; Junop MS; Gloor GB; Edgell DR
    Nucleic Acids Res; 2019 Nov; 47(20):10830-10841. PubMed ID: 31602462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases.
    Lucas P; Otis C; Mercier JP; Turmel M; Lemieux C
    Nucleic Acids Res; 2001 Feb; 29(4):960-9. PubMed ID: 11160929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease.
    Chevalier B; Sussman D; Otis C; Noël AJ; Turmel M; Lemieux C; Stephens K; Monnat RJ; Stoddard BL
    Biochemistry; 2004 Nov; 43(44):14015-26. PubMed ID: 15518550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homing endonuclease structure and function.
    Stoddard BL
    Q Rev Biophys; 2005 Feb; 38(1):49-95. PubMed ID: 16336743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation.
    Takeuchi R; Certo M; Caprara MG; Scharenberg AM; Stoddard BL
    Nucleic Acids Res; 2009 Feb; 37(3):877-90. PubMed ID: 19103658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational redesign of endonuclease DNA binding and cleavage specificity.
    Ashworth J; Havranek JJ; Duarte CM; Sussman D; Monnat RJ; Stoddard BL; Baker D
    Nature; 2006 Jun; 441(7093):656-9. PubMed ID: 16738662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, activity, and structure of a highly specific artificial endonuclease.
    Chevalier BS; Kortemme T; Chadsey MS; Baker D; Monnat RJ; Stoddard BL
    Mol Cell; 2002 Oct; 10(4):895-905. PubMed ID: 12419232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for sequence-dependent DNA cleavage by nonspecific endonucleases.
    Wang YT; Yang WJ; Li CL; Doudeva LG; Yuan HS
    Nucleic Acids Res; 2007; 35(2):584-94. PubMed ID: 17175542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect DNA Sequence Recognition and Its Impact on Nuclease Cleavage Activity.
    Lambert AR; Hallinan JP; Shen BW; Chik JK; Bolduc JM; Kulshina N; Robins LI; Kaiser BK; Jarjour J; Havens K; Scharenberg AM; Stoddard BL
    Structure; 2016 Jun; 24(6):862-73. PubMed ID: 27133026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.
    Redondo P; Prieto J; Muñoz IG; Alibés A; Stricher F; Serrano L; Cabaniols JP; Daboussi F; Arnould S; Perez C; Duchateau P; Pâques F; Blanco FJ; Montoya G
    Nature; 2008 Nov; 456(7218):107-11. PubMed ID: 18987743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes.
    Silva GH; Belfort M; Wende W; Pingoud A
    J Mol Biol; 2006 Aug; 361(4):744-54. PubMed ID: 16872628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server.
    Taylor GK; Petrucci LH; Lambert AR; Baxter SK; Jarjour J; Stoddard BL
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W110-6. PubMed ID: 22570419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning DNA binding affinity and cleavage specificity of an engineered gene-targeting nuclease via surface display, flow cytometry and cellular analyses.
    Niyonzima N; Lambert AR; Werther R; De Silva Feelixge H; Roychoudhury P; Greninger AL; Stone D; Stoddard BL; Jerome KR
    Protein Eng Des Sel; 2017 Jul; 30(7):503-522. PubMed ID: 28873986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.