These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26705620)

  • 1. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrow-line Cooling and Determination of the Magic Wavelength of Cd.
    Yamaguchi A; Safronova MS; Gibble K; Katori H
    Phys Rev Lett; 2019 Sep; 123(11):113201. PubMed ID: 31573273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of magic-wavelength optical dipole trap by using the laser-induced fluorescence spectra of trapped single cesium atoms.
    Liu B; Jin G; Sun R; He J; Wang J
    Opt Express; 2017 Jul; 25(14):15861-15867. PubMed ID: 28789098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.
    Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL
    Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of an Inner-Shell Orbital Clock Transition in Neutral Ytterbium Atoms.
    Ishiyama T; Ono K; Takano T; Sunaga A; Takahashi Y
    Phys Rev Lett; 2023 Apr; 130(15):153402. PubMed ID: 37115891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons.
    Lisdat Ch; Winfred JS; Middelmann T; Riehle F; Sterr U
    Phys Rev Lett; 2009 Aug; 103(9):090801. PubMed ID: 19792777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15).
    McFerran JJ; Yi L; Mejri S; Di Manno S; Zhang W; Guéna J; Le Coq Y; Bize S
    Phys Rev Lett; 2012 May; 108(18):183004. PubMed ID: 22681071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.
    Wall ML; Koller AP; Li S; Zhang X; Cooper NR; Ye J; Rey AM
    Phys Rev Lett; 2016 Jan; 116(3):035301. PubMed ID: 26849600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.
    Ovsiannikov VD; Derevianko A; Gibble K
    Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury.
    Petersen M; Chicireanu R; Dawkins ST; Magalhães DV; Mandache C; Le Coq Y; Clairon A; Bize S
    Phys Rev Lett; 2008 Oct; 101(18):183004. PubMed ID: 18999828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triply Magic Conditions for Microwave Transition of Optically Trapped Alkali-Metal Atoms.
    Li G; Tian Y; Wu W; Li S; Li X; Liu Y; Zhang P; Zhang T
    Phys Rev Lett; 2019 Dec; 123(25):253602. PubMed ID: 31922798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.