These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26705645)

  • 41. Heterodyne-detected vibrational sum frequency generation spectroscopy.
    Stiopkin IV; Jayathilake HD; Bordenyuk AN; Benderskii AV
    J Am Chem Soc; 2008 Feb; 130(7):2271-5. PubMed ID: 18217755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ.
    Lee CM; Mohamed NM; Watts HD; Kubicki JD; Kim SH
    J Phys Chem B; 2013 Jun; 117(22):6681-92. PubMed ID: 23738844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of SDS and PEG on calcium fluoride studied by sum frequency generation vibrational spectroscopy.
    Casford MT; Davies PB
    J Phys Chem B; 2008 Mar; 112(9):2616-21. PubMed ID: 18269273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relative Phase Change of Nearby Resonances in Temporally Delayed Sum Frequency Spectra.
    Shalhout FY; Malyk S; Benderskii AV
    J Phys Chem Lett; 2012 Dec; 3(23):3493-7. PubMed ID: 26290978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-Condon Effects on the Doubly Resonant Sum Frequency Generation of Rhodamine 6G.
    Weiss PA; Silverstein DW; Jensen L
    J Phys Chem Lett; 2014 Jan; 5(2):329-35. PubMed ID: 26270708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water.
    Joutsuka T; Hirano T; Sprik M; Morita A
    Phys Chem Chem Phys; 2018 Jan; 20(5):3040-3053. PubMed ID: 28607983
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the extracellular matrix with sum-frequency-generation spectroscopy.
    Howell C; Diesner MO; Grunze M; Koelsch P
    Langmuir; 2008 Dec; 24(24):13819-21. PubMed ID: 19053661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sum frequency generation (SFG) vibrational spectroscopy of planar phosphatidylethanolamine hybrid bilayer membranes under water.
    Kett PJ; Casford MT; Davies PB
    Langmuir; 2010 Jun; 26(12):9710-9. PubMed ID: 20394443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extracting structural information from the polarization dependence of one- and two-dimensional sum frequency generation spectra.
    Laaser JE; Zanni MT
    J Phys Chem A; 2013 Jul; 117(29):5875-90. PubMed ID: 23140356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multireflection sum frequency generation vibrational spectroscopy.
    Zhang C; Jasensky J; Chen Z
    Anal Chem; 2015 Aug; 87(16):8157-64. PubMed ID: 26176565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces.
    Holinga GJ; York RL; Onorato RM; Thompson CM; Webb NE; Yoon AP; Somorjai GA
    J Am Chem Soc; 2011 Apr; 133(16):6243-53. PubMed ID: 21452815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward a simple molecular understanding of sum frequency generation at air-water interfaces.
    Noah-Vanhoucke J; Smith JD; Geissler PL
    J Phys Chem B; 2009 Apr; 113(13):4065-74. PubMed ID: 19278256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface.
    Perry A; Neipert C; Kasprzyk CR; Green T; Space B; Moore PB
    J Chem Phys; 2005 Oct; 123(14):144705. PubMed ID: 16238414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interface-specific ultrafast two-dimensional vibrational spectroscopy.
    Bredenbeck J; Ghosh A; Nienhuys HK; Bonn M
    Acc Chem Res; 2009 Sep; 42(9):1332-42. PubMed ID: 19441810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polarization mapping: a method to improve sum frequency generation spectral analysis.
    Wang J; Clarke ML; Chen Z
    Anal Chem; 2004 Apr; 76(8):2159-67. PubMed ID: 15080723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determination of Surface Preference Using Heterospectral Surface-Bulk Correlation Spectroscopy.
    Ramsay M; Cai C; Hore DK
    J Phys Chem A; 2020 Mar; 124(9):1841-1849. PubMed ID: 32037816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy.
    Li Q; Kuo CW; Yang Z; Chen P; Chou KC
    Phys Chem Chem Phys; 2009 May; 11(18):3436-42. PubMed ID: 19421546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retrieval of complex χ((2)) parts for quantitative analysis of sum-frequency generation intensity spectra.
    Hofmann MJ; Koelsch P
    J Chem Phys; 2015 Oct; 143(13):134112. PubMed ID: 26450297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sum frequency generation imaging microscopy of CO on platinum.
    Cimatu K; Baldelli S
    J Am Chem Soc; 2006 Dec; 128(50):16016-7. PubMed ID: 17165737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measuring molecular reorientation at liquid surfaces with time-resolved sum-frequency spectroscopy: a theoretical framework.
    Nienhuys HK; Bonn M
    J Phys Chem B; 2009 May; 113(21):7564-73. PubMed ID: 19413304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.