These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 26705859)
1. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Kuo CY; Liu TY; Chan TY; Tsai SC; Hardiansyah A; Huang LY; Yang MC; Lu RH; Jiang JK; Yang CY; Lin CH; Chiu WY Colloids Surf B Biointerfaces; 2016 Apr; 140():567-573. PubMed ID: 26705859 [TBL] [Abstract][Full Text] [Related]
2. Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles. Yu J; Ju Y; Zhao L; Chu X; Yang W; Tian Y; Sheng F; Lin J; Liu F; Dong Y; Hou Y ACS Nano; 2016 Jan; 10(1):159-69. PubMed ID: 26602632 [TBL] [Abstract][Full Text] [Related]
3. Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release. Fortes Brollo ME; Domínguez-Bajo A; Tabero A; Domínguez-Arca V; Gisbert V; Prieto G; Johansson C; Garcia R; Villanueva A; Serrano MC; Morales MDP ACS Appl Mater Interfaces; 2020 Jan; 12(4):4295-4307. PubMed ID: 31904927 [TBL] [Abstract][Full Text] [Related]
4. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Radmansouri M; Bahmani E; Sarikhani E; Rahmani K; Sharifianjazi F; Irani M Int J Biol Macromol; 2018 Sep; 116():378-384. PubMed ID: 29723626 [TBL] [Abstract][Full Text] [Related]
5. Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Wu L; Chen L; Liu F; Qi X; Ge Y; Shen S Colloids Surf B Biointerfaces; 2017 Apr; 152():440-448. PubMed ID: 28183070 [TBL] [Abstract][Full Text] [Related]
6. Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Soliman SMA; El Founi M; Vanderesse R; Acherar S; Ferji K; Babin J; Six JL Colloids Surf B Biointerfaces; 2019 Oct; 182():110393. PubMed ID: 31357128 [TBL] [Abstract][Full Text] [Related]
7. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity. Li Y; Duong HT; Laurent S; MacMillan A; Whan RM; Elst LV; Muller RN; Hu J; Lowe A; Boyer C; Davis TP Adv Healthc Mater; 2015 Jan; 4(1):148-56. PubMed ID: 24985790 [TBL] [Abstract][Full Text] [Related]
8. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Fei W; Zhang Y; Han S; Tao J; Zheng H; Wei Y; Zhu J; Li F; Wang X Int J Pharm; 2017 Mar; 519(1-2):250-262. PubMed ID: 28109899 [TBL] [Abstract][Full Text] [Related]
9. Core-shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Shen S; Wu L; Liu J; Xie M; Shen H; Qi X; Yan Y; Ge Y; Jin Y Int J Pharm; 2015; 486(1-2):380-8. PubMed ID: 25841570 [TBL] [Abstract][Full Text] [Related]
10. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation. Chen W; Cheng CA; Zink JI ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500 [TBL] [Abstract][Full Text] [Related]
11. A novel tumor-targeted thermosensitive liposomal cerasome used for thermally controlled drug release. Li S; Yin G; Pu X; Huang Z; Liao X; Chen X Int J Pharm; 2019 Oct; 570():118660. PubMed ID: 31491484 [TBL] [Abstract][Full Text] [Related]
12. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Porous γ-Fe2O3@mWO3 Multifunctional Nanoparticles for Drug Loading and Controlled Release. Peng H; Huang Q; Wu T; Wen J; He H Curr Drug Deliv; 2018 Feb; 15(2):278-285. PubMed ID: 28240176 [TBL] [Abstract][Full Text] [Related]
14. Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. Huang C; Hu X; Hou Z; Ji J; Li Z; Luan Y J Colloid Interface Sci; 2019 Jun; 545():172-183. PubMed ID: 30878783 [TBL] [Abstract][Full Text] [Related]
15. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery. An N; Lin H; Yang C; Zhang T; Tong R; Chen Y; Qu F Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():292-300. PubMed ID: 27612716 [TBL] [Abstract][Full Text] [Related]
16. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783 [TBL] [Abstract][Full Text] [Related]
17. P(EO-co-LLA) functionalized Fe3O4@mSiO2 nanocomposites for thermo/pH responsive drug controlled release and hyperthermia. Guo W; Yang C; Lin H; Qu F Dalton Trans; 2014 Dec; 43(48):18056-65. PubMed ID: 25353400 [TBL] [Abstract][Full Text] [Related]
18. Polyphosphoester-based nanoparticles with viscous flow core enhanced therapeutic efficacy by improved intracellular drug release. Ma YC; Wang JX; Tao W; Qian HS; Yang XZ ACS Appl Mater Interfaces; 2014 Sep; 6(18):16174-81. PubMed ID: 25188541 [TBL] [Abstract][Full Text] [Related]
19. Magnetic Fe₃ O ₄ nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Huang X; Yi C; Fan Y; Zhang Y; Zhao L; Liang Z; Pan J Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():325-32. PubMed ID: 25063125 [TBL] [Abstract][Full Text] [Related]
20. Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness. Park S; Kim HS; Kim WJ; Yoo HS Int J Pharm; 2012 Mar; 424(1-2):107-14. PubMed ID: 22226875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]