These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 26706190)
21. Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. Marsalek J; Rochfort Q J Toxicol Environ Health A; 2004 Oct 22-Nov 26; 67(20-22):1765-77. PubMed ID: 15371215 [TBL] [Abstract][Full Text] [Related]
22. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. McBride GB; Stott R; Miller W; Bambic D; Wuertz S Water Res; 2013 Sep; 47(14):5282-97. PubMed ID: 23863377 [TBL] [Abstract][Full Text] [Related]
23. Microbial risk classifications for recreational waters and applications to the Swan and Canning Rivers in Western Australia. Abbott B; Lugg R; Devine B; Cook A; Weinstein P J Water Health; 2011 Mar; 9(1):70-9. PubMed ID: 21301116 [TBL] [Abstract][Full Text] [Related]
24. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques. Nnane DE Sci Total Environ; 2011 Nov; 409(24):5188-95. PubMed ID: 21962927 [TBL] [Abstract][Full Text] [Related]
25. Predicting faecal indicator fluxes using digital land use data in the UK's sentinel Water Framework Directive catchment: the Ribble study. Kay D; Wyer M; Crowther J; Stapleton C; Bradford M; McDonald A; Greaves J; Francis C; Watkins J Water Res; 2005 Oct; 39(16):3967-81. PubMed ID: 16112711 [TBL] [Abstract][Full Text] [Related]
26. Sewage effluent as a source of Campylobacter sp. in a surface water catchment. Rechenburg A; Kistemann T Int J Environ Health Res; 2009 Aug; 19(4):239-49. PubMed ID: 20183194 [TBL] [Abstract][Full Text] [Related]
27. Variability analysis of pathogen and indicator loads from urban sewer systems along a river. Aström J; Pettersson TJ; Stenström TA; Bergstedt O Water Sci Technol; 2009; 59(2):203-12. PubMed ID: 19182329 [TBL] [Abstract][Full Text] [Related]
28. Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine. Buerge IJ; Poiger T; Müller MD; Buser HR Environ Sci Technol; 2006 Jul; 40(13):4096-102. PubMed ID: 16856722 [TBL] [Abstract][Full Text] [Related]
29. Estimation of diffuse and point source microbial pollution in the ribble catchment discharging to bathing waters in the north west of England. Wither A; Greaves J; Dunhill I; Wyer M; Stapleton C; Kay D; Humphrey N; Watkins J; Francis C; McDonald A; Crowther J Water Sci Technol; 2005; 51(3-4):191-8. PubMed ID: 15850190 [TBL] [Abstract][Full Text] [Related]
30. Delineation of a chemical and biological signature for stormwater pollution in an urban river. Salmore AK; Hollis EJ; McLellan SL J Water Health; 2006 Jun; 4(2):247-62. PubMed ID: 16813017 [TBL] [Abstract][Full Text] [Related]
31. Tracking microbial transport through four onsite wastewater treatment systems to receiving waters in eastern North Carolina. Habteselassie MY; Kirs M; Conn KE; Blackwood AD; Kelly G; Noble RT J Appl Microbiol; 2011 Oct; 111(4):835-47. PubMed ID: 21767338 [TBL] [Abstract][Full Text] [Related]
32. Reduction of bacteria and somatic coliphages in constructed wetlands for the treatment of combined sewer overflow (retention soil filters). Ruppelt JP; Tondera K; Schreiber C; Kistemann T; Pinnekamp J Int J Hyg Environ Health; 2018 May; 221(4):727-733. PubMed ID: 29728292 [TBL] [Abstract][Full Text] [Related]
33. Combined sewer overflow emissions to bathing waters in Portugal. How to reduce in densely urbanised areas? David LM; Matos JS Water Sci Technol; 2005; 52(9):183-90. PubMed ID: 16445187 [TBL] [Abstract][Full Text] [Related]
34. Mortality rates of pathogen indicator microorganisms discharged from point and non-point sources in an urban area. Kim G; Hur J J Environ Sci (China); 2010; 22(6):929-33. PubMed ID: 20923108 [TBL] [Abstract][Full Text] [Related]
35. Model evaluation of faecal contamination in coastal areas affected by urban rivers receiving combined sewer overflows. Shibata T; Kojima K; Lee SA; Furumai H Water Sci Technol; 2014; 70(3):430-6. PubMed ID: 25098871 [TBL] [Abstract][Full Text] [Related]
36. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions. Mouri G; Oki T Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221 [TBL] [Abstract][Full Text] [Related]
37. Cumulative effects of fecal contamination from combined sewer overflows: Management for source water protection. Jalliffier-Verne I; Heniche M; Madoux-Humery AS; Galarneau M; Servais P; Prévost M; Dorner S J Environ Manage; 2016 Jun; 174():62-70. PubMed ID: 27011341 [TBL] [Abstract][Full Text] [Related]
38. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling. Servais P; Garcia-Armisen T; George I; Billen G Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424 [TBL] [Abstract][Full Text] [Related]
39. Occurrence and fate of organic pollutants in combined sewer systems and possible impacts on receiving waters. Welker A Water Sci Technol; 2007; 56(10):141-8. PubMed ID: 18048987 [TBL] [Abstract][Full Text] [Related]
40. Modeling of coastal water contamination in Fortaleza (Northeastern Brazil). Pereira SP; Rosman PC; Alvarez C; Schetini CA; Souza RO; Vieira RH Water Sci Technol; 2015; 72(6):928-36. PubMed ID: 26360752 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]