BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26706533)

  • 1. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application.
    Ren Y; Zhao H; Liu W; Yang K
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():293-297. PubMed ID: 26706533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution].
    Guo L; Liang C; Guo H; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):565-7. PubMed ID: 11791309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():455-66. PubMed ID: 24857514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.
    Eric Jones J; Chen M; Yu Q
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1363-74. PubMed ID: 24500866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.
    Ossa CP; Rogero SO; Tschiptschin AP
    J Mater Sci Mater Med; 2006 Nov; 17(11):1095-100. PubMed ID: 17122924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.
    Kim H; Johnson JW
    Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva.
    Huang HH
    J Biomed Mater Res A; 2003 Sep; 66(4):829-39. PubMed ID: 12926035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cold plastic deformation on critical pitting potential of AISI 316 L and 304 L steels in an artificial physiological solution simulating the aggressiveness of the human body.
    Cigada A; Mazza B; Pedeferri P; Sinigaglia D
    J Biomed Mater Res; 1977 Jul; 11(4):503-12. PubMed ID: 873942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative biocompatibility evaluation of nickel-free high-nitrogen stainless steel in vitro/in vivo.
    Inoue M; Sasaki M; Katada Y; Taguchi T
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):68-72. PubMed ID: 23852917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural changes within similar coronary stents produced from two different austenitic steels.
    Weiss S; Meissner A; Fischer A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):210-6. PubMed ID: 19627825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A long term accelerating corrosion fatigue texting of coronary stents in vitro].
    Wang J; Li J; Tang J; Lu S; Xi T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):398-401. PubMed ID: 18610630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical potentials between stent-grafts made from different metals induce negligible corrosion.
    Kazimierczak A; Podraza W; Lenart S; Wiernicki I; Gutowski P
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):432-7. PubMed ID: 23867322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between stainless steel, shear stress, and monocytes.
    Messer RL; Mickalonis J; Lewis JB; Omata Y; Davis CM; Brown Y; Wataha JC
    J Biomed Mater Res A; 2008 Oct; 87(1):229-35. PubMed ID: 18092353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.
    Li M; Yin T; Wang Y; Du F; Zou X; Gregersen H; Wang G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():641-8. PubMed ID: 25175259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Design and fabrication of the nickel-free stainless steel coronary stent].
    Teng Y; Zheng F; Zhang B; YangKe
    Zhongguo Yi Liao Qi Xie Za Zhi; 2012 Sep; 36(5):354-6. PubMed ID: 23289341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrosion behaviour of AISI 316L stainless-steel alloys in diabetic serum.
    Moura e Silva T; Monteiro JM; Ferreira MG; Vieira JM
    Clin Mater; 1993; 12(2):103-6. PubMed ID: 10148337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.