BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26706709)

  • 41. Auditory brainstem responses in noise-induced permanent hearing loss.
    Almadori G; Ottaviani F; Paludetti G; Rosignoli M; Gallucci L; D'Alatri L; Vergoni G
    Audiology; 1988; 27(1):36-41. PubMed ID: 3377725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction.
    Morioka S; Sakaguchi H; Yamaguchi T; Ninoyu Y; Mohri H; Nakamura T; Hisa Y; Ogita K; Saito N; Ueyama T
    J Neurochem; 2018 Aug; 146(4):459-473. PubMed ID: 29675997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fine mapping of Ahl3 affecting both age-related and noise-induced hearing loss.
    Morita Y; Hirokawa S; Kikkawa Y; Nomura T; Yonekawa H; Shiroishi T; Takahashi S; Kominami R
    Biochem Biophys Res Commun; 2007 Mar; 355(1):117-21. PubMed ID: 17291455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sources of variability in auditory brainstem response thresholds in a mouse model of noise-induced hearing loss.
    Schrode KM; Dent ML; Lauer AM
    J Acoust Soc Am; 2022 Dec; 152(6):3576. PubMed ID: 36586874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inner hair cell ribbon synapse plasticity might be molecular basis of temporary hearing threshold shifts in mice.
    Wang H; Zhao N; Yan K; Liu X; Zhang Y; Hong Z; Wang M; Yin Q; Wu F; Lei Y; Li X; Shi L; Liu K
    Int J Clin Exp Pathol; 2015; 8(7):8680-91. PubMed ID: 26339457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contributions of mouse models to understanding of age- and noise-related hearing loss.
    Ohlemiller KK
    Brain Res; 2006 May; 1091(1):89-102. PubMed ID: 16631134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Follow-up of latency and threshold shifts of auditory brainstem responses after single and interrupted acoustic trauma in guinea pig.
    Gourévitch B; Doisy T; Avillac M; Edeline JM
    Brain Res; 2009 Dec; 1304():66-79. PubMed ID: 19766602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow.
    Lamm K; Arnold W
    Audiol Neurootol; 1996; 1(3):148-60. PubMed ID: 9390798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.
    Takacs JD; Forrest TJ; Basura GJ
    Hear Res; 2017 Dec; 356():1-15. PubMed ID: 28724501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A major effect QTL on chromosome 18 for noise injury to the mouse cochlear lateral wall.
    Ohlemiller KK; Rosen AD; Gagnon PM
    Hear Res; 2010 Feb; 260(1-2):47-53. PubMed ID: 19913606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hearing threshold shifts from repeated 6-h daily exposure to impact noise.
    Hamernik RP; Ahroon WA; Davis RI; Lei SF
    J Acoust Soc Am; 1994 Jan; 95(1):444-53. PubMed ID: 8120255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetics of age-related hearing loss in mice. IV. Cochlear pathology and hearing loss in 25 BXD recombinant inbred mouse strains.
    Willott JF; Erway LC
    Hear Res; 1998 May; 119(1-2):27-36. PubMed ID: 9641316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction.
    Lavinsky J; Ge M; Crow AL; Pan C; Wang J; Salehi P; Myint A; Eskin E; Allayee H; Lusis AJ; Friedman RA
    G3 (Bethesda); 2016 Oct; 6(10):3219-3228. PubMed ID: 27520957
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N-acetylcysteine attenuates noise-induced permanent hearing loss in diabetic rats.
    Wu HP; Hsu CJ; Cheng TJ; Guo YL
    Hear Res; 2010 Aug; 267(1-2):71-7. PubMed ID: 20430080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic basis for susceptibility to noise-induced hearing loss in mice.
    Davis RR; Newlander JK; Ling X; Cortopassi GA; Krieg EF; Erway LC
    Hear Res; 2001 May; 155(1-2):82-90. PubMed ID: 11335078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss.
    Ohlemiller KK; McFadden SL; Ding DL; Flood DG; Reaume AG; Hoffman EK; Scott RW; Wright JS; Putcha GV; Salvi RJ
    Audiol Neurootol; 1999; 4(5):237-46. PubMed ID: 10436316
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feasibility of a bilateral 4000-6000 Hz notch as a phenotype for genetic association analysis.
    Phillips SL; Richter SJ; Teglas SL; Bhatt IS; Morehouse RC; Hauser ER; Henrich VC
    Int J Audiol; 2015; 54(10):645-52. PubMed ID: 25938503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison.
    Johnson TA; Brown CJ
    Ear Hear; 2005 Dec; 26(6):559-76. PubMed ID: 16377993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment.
    Willott JF; Turner JG; Sundin VS
    Hear Res; 2000 Apr; 142(1-2):79-88. PubMed ID: 10748331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.