These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 26706840)
1. Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c. Patila M; Pavlidis IV; Kouloumpis A; Dimos K; Spyrou K; Katapodis P; Gournis D; Stamatis H Int J Biol Macromol; 2016 Mar; 84():227-35. PubMed ID: 26706840 [TBL] [Abstract][Full Text] [Related]
2. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Sheshmani S; Fashapoyeh MA Acta Chim Slov; 2013; 60(4):813-25. PubMed ID: 24362985 [TBL] [Abstract][Full Text] [Related]
3. Bovine α-lactalbumin functionalized graphene oxide nano-sheet exhibits enhanced biocompatibility: A rational strategy for graphene-based targeted cancer therapy. Mahanta S; Paul S Colloids Surf B Biointerfaces; 2015 Oct; 134():178-87. PubMed ID: 26196090 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of Laccase Through Immobilization on Functionalized GO-Derivatives. Chatzikonstantinou AV; Gkantzou E; Gournis D; Patila M; Stamatis H Methods Enzymol; 2018; 609():47-81. PubMed ID: 30244799 [TBL] [Abstract][Full Text] [Related]
5. Direct electron transfer of Cytochrome c at mono-dispersed and negatively charged perylene-graphene matrix. Zhang N; Lv X; Ma W; Hu Y; Li F; Han D; Niu L Talanta; 2013 Mar; 107():195-202. PubMed ID: 23598212 [TBL] [Abstract][Full Text] [Related]
6. Contrasting modulation of enzyme activity exhibited by graphene oxide and reduced graphene. Yang X; Zhao C; Ju E; Ren J; Qu X Chem Commun (Camb); 2013 Oct; 49(77):8611-3. PubMed ID: 23945748 [TBL] [Abstract][Full Text] [Related]
7. Increased thermal stability of cold-adapted esterase at ambient temperatures by immobilization on graphene oxide. Lee H; Jeong HK; Han J; Chung HS; Jang SH; Lee C Bioresour Technol; 2013 Nov; 148():620-3. PubMed ID: 24080443 [TBL] [Abstract][Full Text] [Related]
8. Graphene-cyclodextrin-cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability. Gong CB; Guo CC; Jiang D; Tang Q; Liu CH; Ma XB Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():281-7. PubMed ID: 24863226 [TBL] [Abstract][Full Text] [Related]
9. Facile immobilization of Bacillus licheniformis γ-glutamyltranspeptidase onto graphene oxide nanosheets and its application to the biocatalytic synthesis of γ-l-glutamyl peptides. Lin LL; Chi MC; Lan YJ; Lin MG; Juang TY; Wang TF Int J Biol Macromol; 2018 Oct; 117():1326-1333. PubMed ID: 29183740 [TBL] [Abstract][Full Text] [Related]
10. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Adeel M; Bilal M; Rasheed T; Sharma A; Iqbal HMN Int J Biol Macromol; 2018 Dec; 120(Pt B):1430-1440. PubMed ID: 30261251 [TBL] [Abstract][Full Text] [Related]
11. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Pavlidis IV; Vorhaben T; Tsoufis T; Rudolf P; Bornscheuer UT; Gournis D; Stamatis H Bioresour Technol; 2012 Jul; 115():164-71. PubMed ID: 22113071 [TBL] [Abstract][Full Text] [Related]
12. Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates. Lee CH; Lang J; Yen CW; Shih PC; Lin TS; Mou CY J Phys Chem B; 2005 Jun; 109(25):12277-86. PubMed ID: 16852515 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of lactoperoxidase on graphene oxide nanosheets with improved activity and stability. Shariat SZAS; Borzouee F; Mofid MR; Varshosaz J Biotechnol Lett; 2018 Oct; 40(9-10):1343-1353. PubMed ID: 29915900 [TBL] [Abstract][Full Text] [Related]
14. Greatly improved catalytic activity and direct electron transfer rate of cytochrome C due to the confinement effect in a layered self-assembly structure. Hua BY; Wang J; Wang K; Li X; Zhu XJ; Xia XH Chem Commun (Camb); 2012 Feb; 48(17):2316-8. PubMed ID: 22261736 [TBL] [Abstract][Full Text] [Related]
15. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Chen D; Li L; Guo L Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption. Ye N; Xie Y; Shi P; Gao T; Ma J Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():8-14. PubMed ID: 25491795 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical characteristics of pristine and functionalized graphene. Bourdo SE; Al Faouri R; Sleezer R; Nima ZA; Lafont A; Chhetri BP; Benamara M; Martin B; Salamo GJ; Biris AS J Appl Toxicol; 2017 Nov; 37(11):1288-1296. PubMed ID: 28677847 [TBL] [Abstract][Full Text] [Related]
18. Graphene oxide immobilized enzymes show high thermal and solvent stability. Hermanová S; Zarevúcká M; Bouša D; Pumera M; Sofer Z Nanoscale; 2015 Mar; 7(13):5852-8. PubMed ID: 25757536 [TBL] [Abstract][Full Text] [Related]
19. Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol. Zu Y; Tang J; Zhu W; Zhang M; Liu G; Liu Y; Zhang W; Jia M Bioresour Technol; 2011 Oct; 102(19):8939-44. PubMed ID: 21824767 [TBL] [Abstract][Full Text] [Related]
20. Cell attachment evaluation of the immobilized bioactive peptide on a nanographene oxide composite. Adibi-Motlagh B; Lotfi AS; Rezaei A; Hashemi E Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():323-329. PubMed ID: 29025665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]