These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 26706927)
1. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927 [TBL] [Abstract][Full Text] [Related]
2. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA). Seco R; Karl T; Guenther A; Hosman KP; Pallardy SG; Gu L; Geron C; Harley P; Kim S Glob Chang Biol; 2015 Oct; 21(10):3657-74. PubMed ID: 25980459 [TBL] [Abstract][Full Text] [Related]
3. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. Aydin YM; Yaman B; Koca H; Dasdemir O; Kara M; Altiok H; Dumanoglu Y; Bayram A; Tolunay D; Odabasi M; Elbir T Sci Total Environ; 2014 Aug; 490():239-53. PubMed ID: 24858222 [TBL] [Abstract][Full Text] [Related]
4. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares. Welter S; Bracho-Nuñez A; Mir C; Zimmer I; Kesselmeier J; Lumaret R; Schnitzler JP; Staudt M Tree Physiol; 2012 Sep; 32(9):1082-91. PubMed ID: 22848089 [TBL] [Abstract][Full Text] [Related]
5. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas. Lahr EC; Schade GW; Crossett CC; Watson MR Glob Chang Biol; 2015 Nov; 21(11):4221-36. PubMed ID: 26111255 [TBL] [Abstract][Full Text] [Related]
6. Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Copolovici L; Väärtnõu F; Portillo Estrada M; Niinemets Ü Tree Physiol; 2014 Dec; 34(12):1399-410. PubMed ID: 25428827 [TBL] [Abstract][Full Text] [Related]
7. Inter- and intra-specific variability in isoprene production and photosynthesis of Central European oak species. Steinbrecher R; Contran N; Gugerli F; Schnitzler JP; Zimmer I; Menard T; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():148-56. PubMed ID: 23279295 [TBL] [Abstract][Full Text] [Related]
8. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Fares S; Loreto F; Kleist E; Wildt J Plant Biol (Stuttg); 2008 Jan; 10(1):44-54. PubMed ID: 17538866 [TBL] [Abstract][Full Text] [Related]
9. Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico. Gastelum SL; Mejía-Velázquez GM; Lozano-García DF Environ Monit Assess; 2016 Jun; 188(6):321. PubMed ID: 27147234 [TBL] [Abstract][Full Text] [Related]
10. Terpenoid emissions from Quercus robur. A case study of Galicia (NW Spain). Pérez-Rial D; Peñuelas J; López-Mahía P; Llusià J J Environ Monit; 2009 Jun; 11(6):1268-75. PubMed ID: 19513459 [TBL] [Abstract][Full Text] [Related]
11. Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Velikova V; Tsonev T; Pinelli P; Alessio GA; Loreto F Tree Physiol; 2005 Dec; 25(12):1523-32. PubMed ID: 16137938 [TBL] [Abstract][Full Text] [Related]
12. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan. Bao H; Kondo A; Kaga A; Tada M; Sakaguti K; Inoue Y; Shimoda Y; Narumi D; Machimura T Environ Res; 2008 Feb; 106(2):156-69. PubMed ID: 18023428 [TBL] [Abstract][Full Text] [Related]
13. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. Chen J; Tang J; Yu X Environ Pollut; 2020 Apr; 259():113955. PubMed ID: 32023800 [TBL] [Abstract][Full Text] [Related]
14. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Feng Z; Yuan X; Fares S; Loreto F; Li P; Hoshika Y; Paoletti E Plant Cell Environ; 2019 Jun; 42(6):1939-1949. PubMed ID: 30767225 [TBL] [Abstract][Full Text] [Related]
15. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: A Guidolotti G; Pallozzi E; Gavrichkova O; Scartazza A; Mattioni M; Loreto F; Calfapietra C Plant Cell Environ; 2019 Jun; 42(6):1929-1938. PubMed ID: 30663094 [TBL] [Abstract][Full Text] [Related]
16. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Eller AS; Young LL; Trowbridge AM; Monson RK Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962 [TBL] [Abstract][Full Text] [Related]
17. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. Jiang Y; Veromann-Jürgenson LL; Ye J; Niinemets Ü Plant Cell Environ; 2018 Jan; 41(1):160-175. PubMed ID: 28776716 [TBL] [Abstract][Full Text] [Related]
18. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration. Potosnak MJ; Lestourgeon L; Nunez O Sci Total Environ; 2014 May; 481():352-9. PubMed ID: 24614154 [TBL] [Abstract][Full Text] [Related]
19. Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves. Brüggemann N; Schnitzler JP Tree Physiol; 2002 Oct; 22(14):1011-8. PubMed ID: 12359528 [TBL] [Abstract][Full Text] [Related]
20. De novo post-illumination monoterpene burst in Quercus ilex (holm oak). Srikanta Dani KG; Marino G; Taiti C; Mancuso S; Atwell BJ; Loreto F; Centritto M Planta; 2017 Feb; 245(2):459-465. PubMed ID: 27990573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]