These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1018 related articles for article (PubMed ID: 26707001)
1. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
2. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
3. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification. Chen Z; Lu M Talanta; 2016 Nov; 160():444-448. PubMed ID: 27591636 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Wang P; Wang L; Ding M; Pei M; Guo W Analyst; 2019 Oct; 144(19):5866-5874. PubMed ID: 31482879 [TBL] [Abstract][Full Text] [Related]
6. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315 [TBL] [Abstract][Full Text] [Related]
8. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification. Ni J; Yang W; Wang Q; Luo F; Guo L; Qiu B; Lin Z; Yang H Biosens Bioelectron; 2018 May; 105():182-187. PubMed ID: 29412943 [TBL] [Abstract][Full Text] [Related]
9. Prussian blue nanoparticle-labeled aptasensing platform on graphene oxide for voltammetric detection of α-fetoprotein in hepatocellular carcinoma with target recycling. Zhang B; Ding H; Chen Q; Wang T; Zhang K Analyst; 2019 Aug; 144(16):4858-4864. PubMed ID: 31294738 [TBL] [Abstract][Full Text] [Related]
10. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Zhang J; Zhang X; Yang G; Chen J; Wang S Biosens Bioelectron; 2013 Mar; 41():704-9. PubMed ID: 23089328 [TBL] [Abstract][Full Text] [Related]
11. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Gao F; Gao C; He S; Wang Q; Wu A Biosens Bioelectron; 2016 Jul; 81():15-22. PubMed ID: 26913503 [TBL] [Abstract][Full Text] [Related]
12. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification. Yan G; Wang Y; He X; Wang K; Liu J; Du Y Biosens Bioelectron; 2013 Jun; 44():57-63. PubMed ID: 23391707 [TBL] [Abstract][Full Text] [Related]
13. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Bulbul G; Hayat A; Andreescu S Nanoscale; 2015 Aug; 7(31):13230-8. PubMed ID: 26186604 [TBL] [Abstract][Full Text] [Related]
14. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
15. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L; Vidal JC; Duato P; Castillo JR Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729 [TBL] [Abstract][Full Text] [Related]
16. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Sun Z; Fu H; Deng L; Wang J Anal Chim Acta; 2013 Jan; 761():84-91. PubMed ID: 23312318 [TBL] [Abstract][Full Text] [Related]
17. Label-Free and Highly-Sensitive Detection of Ochratoxin A Using One-Pot Synthesized Reduced Graphene Oxide/Gold Nanoparticles-Based Impedimetric Aptasensor. Alhamoud Y; Li Y; Zhou H; Al-Wazer R; Gong Y; Zhi S; Yang D Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33808613 [TBL] [Abstract][Full Text] [Related]
18. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Jiang L; Qian J; Yang X; Yan Y; Liu Q; Wang K; Wang K Anal Chim Acta; 2014 Jan; 806():128-35. PubMed ID: 24331048 [TBL] [Abstract][Full Text] [Related]
19. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C; Tan R; Li J; Zhang Z Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760 [TBL] [Abstract][Full Text] [Related]
20. Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Liu LH; Zhou XH; Shi HC Biosens Bioelectron; 2015 Oct; 72():300-5. PubMed ID: 26000463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]