These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ MAbs; 2015; 7(1):212-30. PubMed ID: 25559441 [TBL] [Abstract][Full Text] [Related]
24. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies. Zarraga IE; Taing R; Zarzar J; Luoma J; Hsiung J; Patel A; Lim FJ J Pharm Sci; 2013 Aug; 102(8):2538-49. PubMed ID: 23873347 [TBL] [Abstract][Full Text] [Related]
25. Utility of High Resolution 2D NMR Fingerprinting in Assessing Viscosity of Therapeutic Monoclonal Antibodies. Majumder S; Bhattacharya DS; Langford A; Ignatius AA Pharm Res; 2022 Mar; 39(3):529-539. PubMed ID: 35174433 [TBL] [Abstract][Full Text] [Related]
26. High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. He F; Becker GW; Litowski JR; Narhi LO; Brems DN; Razinkov VI Anal Biochem; 2010 Apr; 399(1):141-3. PubMed ID: 19995543 [TBL] [Abstract][Full Text] [Related]
27. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions. Binabaji E; Ma J; Zydney AL Pharm Res; 2015 Sep; 32(9):3102-9. PubMed ID: 25832501 [TBL] [Abstract][Full Text] [Related]
28. Combining Scattering Experiments and Colloid Theory to Characterize Charge Effects in Concentrated Antibody Solutions. Gulotta A; Polimeni M; Lenton S; Starr CG; Stradner A; Zaccarelli E; Schurtenberger P Mol Pharm; 2024 May; 21(5):2250-2271. PubMed ID: 38661388 [TBL] [Abstract][Full Text] [Related]
29. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1. Hu Y; Arora J; Joshi SB; Esfandiary R; Middaugh CR; Weis DD; Volkin DB J Pharm Sci; 2020 Jan; 109(1):340-352. PubMed ID: 31201906 [TBL] [Abstract][Full Text] [Related]
30. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints. Clark NJ; Zhang H; Krueger S; Lee HJ; Ketchem RR; Kerwin B; Kanapuram SR; Treuheit MJ; McAuley A; Curtis JE J Phys Chem B; 2013 Nov; 117(45):14029-38. PubMed ID: 24171386 [TBL] [Abstract][Full Text] [Related]
31. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies? Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887 [TBL] [Abstract][Full Text] [Related]
32. Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions. Bhambhani A; Kissmann JM; Joshi SB; Volkin DB; Kashi RS; Middaugh CR J Pharm Sci; 2012 Mar; 101(3):1120-35. PubMed ID: 22147527 [TBL] [Abstract][Full Text] [Related]
33. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody. Yang TC; Langford AJ; Kumar S; Ruesch JC; Wang W J Pharm Sci; 2016 Aug; 105(8):2328-37. PubMed ID: 27373839 [TBL] [Abstract][Full Text] [Related]
34. X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. Dear BJ; Bollinger JA; Chowdhury A; Hung JJ; Wilks LR; Karouta CA; Ramachandran K; Shay TY; Nieto MP; Sharma A; Cheung JK; Nykypanchuk D; Godfrin PD; Johnston KP; Truskett TM J Phys Chem B; 2019 Jun; 123(25):5274-5290. PubMed ID: 31146525 [TBL] [Abstract][Full Text] [Related]
35. Characterizing Experimental Monoclonal Antibody Interactions and Clustering Using a Coarse-Grained Simulation Library and a Viscosity Model. Chowdhury A; Manohar N; Guruprasad G; Chen AT; Lanzaro A; Blanco M; Johnston KP; Truskett TM J Phys Chem B; 2023 Feb; 127(5):1120-1137. PubMed ID: 36716270 [TBL] [Abstract][Full Text] [Related]
36. Poly(glutamic acid)-Based Viscosity Reducers for Concentrated Formulations of a Monoclonal IgG Antibody. Lapenna A; Dagallier C; Huille S; Tribet C Mol Pharm; 2024 Feb; 21(2):982-991. PubMed ID: 38240032 [TBL] [Abstract][Full Text] [Related]
37. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering. Geoghegan JC; Fleming R; Damschroder M; Bishop SM; Sathish HA; Esfandiary R MAbs; 2016 Jul; 8(5):941-50. PubMed ID: 27050875 [TBL] [Abstract][Full Text] [Related]
38. Cosolute effects on the chemical potential and interactions of an IgG1 monoclonal antibody at high concentrations. Scherer TM J Phys Chem B; 2013 Feb; 117(8):2254-66. PubMed ID: 23330570 [TBL] [Abstract][Full Text] [Related]