These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 26707185)
1. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil. Obeidy C; Bravin MN; Bouchardon JL; Conord C; Moutte J; Guy B; Faure O Ecotoxicol Environ Saf; 2016 Apr; 126():23-29. PubMed ID: 26707185 [TBL] [Abstract][Full Text] [Related]
2. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Silva Gonzaga MI; Santos JA; Ma LQ Environ Pollut; 2006 Sep; 143(2):254-60. PubMed ID: 16442683 [TBL] [Abstract][Full Text] [Related]
3. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Luo YM; Christie P; Baker AJ Chemosphere; 2000 Jul; 41(1-2):161-4. PubMed ID: 10819195 [TBL] [Abstract][Full Text] [Related]
4. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Simmler M; Suess E; Christl I; Kotsev T; Kretzschmar R Sci Total Environ; 2016 Dec; 572():742-754. PubMed ID: 27614862 [TBL] [Abstract][Full Text] [Related]
5. Arsenic in the rhizosphere soil solution of ferns. Wei C; Zheng H; Yu J Int J Phytoremediation; 2012 Dec; 14(10):950-65. PubMed ID: 22908657 [TBL] [Abstract][Full Text] [Related]
6. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Das S; Chou ML; Jean JS; Liu CC; Yang HJ Sci Total Environ; 2016 Jan; 542(Pt A):642-52. PubMed ID: 26546760 [TBL] [Abstract][Full Text] [Related]
7. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus). Lewińska K; Karczewska A Int J Phytoremediation; 2013; 15(1):91-104. PubMed ID: 23487988 [TBL] [Abstract][Full Text] [Related]
8. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice]. Yang WT; Wang YJ; Zhou H; Yi KX; Zeng M; Peng PQ; Liao BH Huan Jing Ke Xue; 2015 Feb; 36(2):694-9. PubMed ID: 26031100 [TBL] [Abstract][Full Text] [Related]
9. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. Karczewska A; Lewińska K; Gałka B J Hazard Mater; 2013 Nov; 262():1014-21. PubMed ID: 23044199 [TBL] [Abstract][Full Text] [Related]
10. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
11. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941 [TBL] [Abstract][Full Text] [Related]
12. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake. Saj S; Mikola J; Ekelund F Oecologia; 2009 Aug; 161(2):331-41. PubMed ID: 19484477 [TBL] [Abstract][Full Text] [Related]
13. Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Guarino F; Conte B; Improta G; Sciarrillo R; Castiglione S; Cicatelli A; Guarino C Ecotoxicol Environ Saf; 2018 Feb; 148():675-683. PubMed ID: 29172148 [TBL] [Abstract][Full Text] [Related]
14. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Liu S; Lu Y; Yang C; Liu C; Ma L; Dang Z Environ Sci Pollut Res Int; 2017 Oct; 24(30):23815-23824. PubMed ID: 28866780 [TBL] [Abstract][Full Text] [Related]
15. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Gonzaga MI; Ma LQ; Santos JA; Matias MI Sci Total Environ; 2009 Aug; 407(16):4711-6. PubMed ID: 19476972 [TBL] [Abstract][Full Text] [Related]
16. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Muhammad I; Puschenreiter M; Wenzel WW Sci Total Environ; 2012 Feb; 416():490-500. PubMed ID: 22177029 [TBL] [Abstract][Full Text] [Related]
17. Effect of Lupinus albus L. root activities on As and Cu mobility after addition of iron-based soil amendments. Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Moreno-Jiménez E Chemosphere; 2017 Sep; 182():373-381. PubMed ID: 28505579 [TBL] [Abstract][Full Text] [Related]
18. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Bergqvist C; Herbert R; Persson I; Greger M Environ Pollut; 2014 Jan; 184():540-6. PubMed ID: 24184375 [TBL] [Abstract][Full Text] [Related]
19. Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field. Walter J; Kreyling J; Singh BK; Jentsch A Plant Biol (Stuttg); 2016 Mar; 18(2):262-70. PubMed ID: 26284575 [TBL] [Abstract][Full Text] [Related]
20. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Xu JY; Li HB; Liang S; Luo J; Ma LQ Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]