These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 26707412)
1. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique. Labuschagne PW; Naicker B; Kalombo L Int J Pharm; 2016 Feb; 499(1-2):205-216. PubMed ID: 26707412 [TBL] [Abstract][Full Text] [Related]
2. Development of shellac-coated sustained release pellet formulations. Farag Y; Leopold CS Eur J Pharm Sci; 2011 Mar; 42(4):400-5. PubMed ID: 21251975 [TBL] [Abstract][Full Text] [Related]
3. Formation of shellac succinate having improved enteric film properties through dry media reaction. Limmatvapirat S; Panchapornpon D; Limmatvapirat C; Nunthanid J; Luangtana-Anan M; Puttipipatkhachorn S Eur J Pharm Biopharm; 2008 Sep; 70(1):335-44. PubMed ID: 18430548 [TBL] [Abstract][Full Text] [Related]
4. Modification of physicochemical and mechanical properties of shellac by partial hydrolysis. Limmatvapirat S; Limmatvapirat C; Luangtana-Anan M; Nunthanid J; Oguchi T; Tozuka Y; Yamamoto K; Puttipipatkhachorn S Int J Pharm; 2004 Jun; 278(1):41-9. PubMed ID: 15158947 [TBL] [Abstract][Full Text] [Related]
5. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Thakur R; Gupta RB Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406 [TBL] [Abstract][Full Text] [Related]
6. Enhanced enteric properties and stability of shellac films through composite salts formation. Limmatvapirat S; Limmatvapirat C; Puttipipatkhachorn S; Nuntanid J; Luangtana-Anan M Eur J Pharm Biopharm; 2007 Nov; 67(3):690-8. PubMed ID: 17576057 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of progesterone dispersions using supercritical carbon dioxide. Falconer JR; Wen J; Zargar-Shoshtari S; Chen JJ; Farid M; Tallon SJ; Alany RG Drug Dev Ind Pharm; 2014 Apr; 40(4):458-69. PubMed ID: 23418960 [TBL] [Abstract][Full Text] [Related]
8. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131 [TBL] [Abstract][Full Text] [Related]
9. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide. Mishima K; Honjo M; Sharmin T; Ito S; Kawakami R; Kato T; Misumi M; Suetsugu T; Orii H; Kawano H; Irie K; Sano K; Mishima K; Harada T; Ouchi M Pharm Dev Technol; 2016 Sep; 21(6):737-48. PubMed ID: 26024240 [TBL] [Abstract][Full Text] [Related]
10. Modeling of the Production of Lipid Microparticles Using PGSS López-Iglesias C; López ER; Fernández J; Landin M; García-González CA Molecules; 2020 Oct; 25(21):. PubMed ID: 33114452 [TBL] [Abstract][Full Text] [Related]
11. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts. Porta GD; Campardelli R; Falco N; Reverchon E J Pharm Sci; 2011 Oct; 100(10):4357-67. PubMed ID: 21638283 [TBL] [Abstract][Full Text] [Related]
12. Near-critical CO2 in mesoporous silica studied by in situ FTIR spectroscopy. Schneider MS; Grunwaldt JD; Baiker A Langmuir; 2004 Mar; 20(7):2890-9. PubMed ID: 15835169 [TBL] [Abstract][Full Text] [Related]
13. The effects of supercritical carbon dioxide processing on progesterone dispersion systems: a multivariate study. Falconer JR; Wen J; Zargar-Shoshtari S; Chen JJ; Mohammed F; Chan J; Alany RG AAPS PharmSciTech; 2012 Dec; 13(4):1255-65. PubMed ID: 22993123 [TBL] [Abstract][Full Text] [Related]
14. Development of a Novel Milling System Using Supercritical Carbon Dioxide for Improvement of Dissolution Characteristics of Water-Poorly Soluble Drugs. Fern JC; Nakamura H; Watano S Chem Pharm Bull (Tokyo); 2016; 64(12):1720-1725. PubMed ID: 27904081 [TBL] [Abstract][Full Text] [Related]
15. Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions. De Zordi N; Moneghini M; Kikic I; Grassi M; Del Rio Castillo AE; Solinas D; Bolger MB Eur J Pharm Biopharm; 2012 May; 81(1):131-41. PubMed ID: 22266263 [TBL] [Abstract][Full Text] [Related]
16. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Pestieau A; Krier F; Lebrun P; Brouwers A; Streel B; Evrard B Int J Pharm; 2015 May; 485(1-2):295-305. PubMed ID: 25796121 [TBL] [Abstract][Full Text] [Related]
17. Impregnation of mesoporous silica with poor aqueous soluble molecule using pressurized carbon dioxide: Is the solubility in the supercritical and subcritical phase a critical parameter? Koch N; Jennotte O; Grignard B; Lechanteur A; Evrard B Eur J Pharm Sci; 2020 Jul; 150():105332. PubMed ID: 32361178 [TBL] [Abstract][Full Text] [Related]
18. PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties. Perinelli DR; Cespi M; Bonacucina G; Naylor A; Whitaker M; Lam JK; Howdle SM; Casettari L; Palmieri GF Curr Drug Deliv; 2016; 13(5):673-81. PubMed ID: 26674199 [TBL] [Abstract][Full Text] [Related]
19. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Koushik K; Kompella UB Pharm Res; 2004 Mar; 21(3):524-35. PubMed ID: 15070105 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. Perrut M; Jung J; Leboeuf F Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]