BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 26707455)

  • 1. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records.
    Anderson JP; Parikh JR; Shenfeld DK; Ivanov V; Marks C; Church BW; Laramie JM; Mardekian J; Piper BA; Willke RJ; Rublee DA
    J Diabetes Sci Technol; 2015 Dec; 10(1):6-18. PubMed ID: 26685993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals.
    Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC
    J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a screening tool using electronic health records for undiagnosed Type 2 diabetes mellitus and impaired fasting glucose detection in the Slovenian population.
    Štiglic G; Kocbek P; Cilar L; Fijačko N; Stožer A; Zaletel J; Sheikh A; Povalej Bržan P
    Diabet Med; 2018 May; 35(5):640-649. PubMed ID: 29460977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: infrastructure for comparative effectiveness research and population health management.
    Kudyakov R; Bowen J; Ewen E; West SL; Daoud Y; Fleming N; Masica A
    Popul Health Manag; 2012 Feb; 15(1):3-11. PubMed ID: 21877923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Claims-based studies of oral glucose-lowering medications can achieve balance in critical clinical variables only observed in electronic health records.
    Patorno E; Gopalakrishnan C; Franklin JM; Brodovicz KG; Masso-Gonzalez E; Bartels DB; Liu J; Schneeweiss S
    Diabetes Obes Metab; 2018 Apr; 20(4):974-984. PubMed ID: 29206336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cross-sectional survey exploring attitudes towards provincial electronic health record implementation among clients attending the Provincial Sexually Transmitted Infections Clinic in British Columbia.
    Pedersen H; Taylor D; Gilbert M; Achen M; Lester R; Ogilvie G
    Sex Transm Infect; 2015 Feb; 91(1):44-8. PubMed ID: 25480149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration.
    Singh A; Nadkarni G; Gottesman O; Ellis SB; Bottinger EP; Guttag JV
    J Biomed Inform; 2015 Feb; 53():220-8. PubMed ID: 25460205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study.
    Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P
    Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
    Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M
    PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data.
    Ding DY; Simpson C; Pfohl S; Kale DC; Jung K; Shah NH
    Pac Symp Biocomput; 2019; 24():18-29. PubMed ID: 30864307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting time-evolving phenotypic topics via tensor factorization on electronic health records: Cardiovascular disease case study.
    Zhao J; Zhang Y; Schlueter DJ; Wu P; Eric Kerchberger V; Trent Rosenbloom S; Wells QS; Feng Q; Denny JC; Wei WQ
    J Biomed Inform; 2019 Oct; 98():103270. PubMed ID: 31445983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Non-Laboratory and Laboratory Prediction Models for Current and Future Diabetes Mellitus: A Cross-Sectional and Retrospective Cohort Study.
    Ahn CH; Yoon JW; Hahn S; Moon MK; Park KS; Cho YM
    PLoS One; 2016; 11(5):e0156155. PubMed ID: 27214034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records.
    Nguyen BP; Pham HN; Tran H; Nghiem N; Nguyen QH; Do TTT; Tran CT; Simpson CR
    Comput Methods Programs Biomed; 2019 Dec; 182():105055. PubMed ID: 31505379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.
    Taslimitehrani V; Dong G; Pereira NL; Panahiazar M; Pathak J
    J Biomed Inform; 2016 Apr; 60():260-9. PubMed ID: 26844760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.