These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 26707809)
21. Understanding the effect of temperature downshift on CHO cell growth, antibody titer and product quality by intracellular metabolite profiling and in vivo monitoring of redox state. Zhu Z; Chen X; Li W; Zhuang Y; Zhao Y; Wang G Biotechnol Prog; 2023; 39(4):e3352. PubMed ID: 37141532 [TBL] [Abstract][Full Text] [Related]
22. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512 [TBL] [Abstract][Full Text] [Related]
23. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Luo J; Vijayasankaran N; Autsen J; Santuray R; Hudson T; Amanullah A; Li F Biotechnol Bioeng; 2012 Jan; 109(1):146-56. PubMed ID: 21964570 [TBL] [Abstract][Full Text] [Related]
24. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. Torres M; Zúñiga R; Gutierrez M; Vergara M; Collazo N; Reyes J; Berrios J; Aguillon JC; Molina MC; Altamirano C PLoS One; 2018; 13(3):e0194510. PubMed ID: 29566086 [TBL] [Abstract][Full Text] [Related]
25. More similar than different: Host cell protein production using three null CHO cell lines. Yuk IH; Nishihara J; Walker D; Huang E; Gunawan F; Subramanian J; Pynn AF; Yu XC; Zhu-Shimoni J; Vanderlaan M; Krawitz DC Biotechnol Bioeng; 2015 Oct; 112(10):2068-83. PubMed ID: 25894672 [TBL] [Abstract][Full Text] [Related]
26. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546 [TBL] [Abstract][Full Text] [Related]
27. How does mild hypothermia affect monoclonal antibody glycosylation? Sou SN; Sellick C; Lee K; Mason A; Kyriakopoulos S; Polizzi KM; Kontoravdi C Biotechnol Bioeng; 2015 Jun; 112(6):1165-76. PubMed ID: 25545631 [TBL] [Abstract][Full Text] [Related]
28. Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. Gammell P; Barron N; Kumar N; Clynes M J Biotechnol; 2007 Jun; 130(3):213-8. PubMed ID: 17570552 [TBL] [Abstract][Full Text] [Related]
29. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance. Li J; Wong CL; Vijayasankaran N; Hudson T; Amanullah A Biotechnol Bioeng; 2012 May; 109(5):1173-86. PubMed ID: 22124879 [TBL] [Abstract][Full Text] [Related]
30. Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Ahn WS; Jeon JJ; Jeong YR; Lee SJ; Yoon SK Biotechnol Bioeng; 2008 Dec; 101(6):1234-44. PubMed ID: 18980186 [TBL] [Abstract][Full Text] [Related]
31. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis. Nargund S; Qiu J; Goudar CT Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228 [TBL] [Abstract][Full Text] [Related]
32. Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism. Tsao YS; Cardoso AG; Condon RG; Voloch M; Lio P; Lagos JC; Kearns BG; Liu Z J Biotechnol; 2005 Aug; 118(3):316-27. PubMed ID: 16019100 [TBL] [Abstract][Full Text] [Related]
33. A proteomic approach towards understanding crypoprotective action of Me2SO on the CHO cell proteome. Alanazi IO; Benabdelkamel H; Alghamdi W; Alfadda AA; Mahbubani KT; Almalik A; Alradwan I; Altammami M; Slater NKH; Masood A Cryobiology; 2020 Jun; 94():107-115. PubMed ID: 32259523 [TBL] [Abstract][Full Text] [Related]
34. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Chee Furng Wong D; Tin Kam Wong K; Tang Goh L; Kiat Heng C; Gek Sim Yap M Biotechnol Bioeng; 2005 Jan; 89(2):164-77. PubMed ID: 15593097 [TBL] [Abstract][Full Text] [Related]
35. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions. Badsha MB; Kurata H; Onitsuka M; Oga T; Omasa T J Biosci Bioeng; 2016 Jul; 122(1):117-24. PubMed ID: 26803706 [TBL] [Abstract][Full Text] [Related]
36. Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. Dorai H; Kyung YS; Ellis D; Kinney C; Lin C; Jan D; Moore G; Betenbaugh MJ Biotechnol Bioeng; 2009 Jun; 103(3):592-608. PubMed ID: 19241388 [TBL] [Abstract][Full Text] [Related]
37. Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells. Jeon MK; Yu DY; Lee GM Appl Microbiol Biotechnol; 2011 Nov; 92(4):779-90. PubMed ID: 21792592 [TBL] [Abstract][Full Text] [Related]
38. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Kaushik P; Curell RV; Henry M; Barron N; Meleady P Biotechnol Lett; 2020 Dec; 42(12):2523-2536. PubMed ID: 32648187 [TBL] [Abstract][Full Text] [Related]
39. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692 [TBL] [Abstract][Full Text] [Related]
40. Comparative phenotypic analysis of CHO clones and culture media for lactate shift. Hong JK; Nargund S; Lakshmanan M; Kyriakopoulos S; Kim DY; Ang KS; Leong D; Yang Y; Lee DY J Biotechnol; 2018 Oct; 283():97-104. PubMed ID: 30076878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]