BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26708012)

  • 1. Concave Pd-Pt Core-Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance.
    Zhang Y; Bu L; Jiang K; Guo S; Huang X
    Small; 2016 Feb; 12(6):706-12. PubMed ID: 26708012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies.
    Kim Y; Lee YW; Kim M; Han SW
    Chemistry; 2014 Jun; 20(26):7901-5. PubMed ID: 24867229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique Cu@CuPt Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity.
    Wang Q; Zhao Z; Jia Y; Wang M; Qi W; Pang Y; Yi J; Zhang Y; Li Z; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36817-36827. PubMed ID: 28975789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts.
    Liu Y; Fang Z; Kuai L; Geng B
    Nanoscale; 2014 Aug; 6(16):9791-7. PubMed ID: 25008373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Synthesis of Pd@Pt
    Lee CT; Wang H; Zhao M; Yang TH; Vara M; Xia Y
    Chemistry; 2019 Apr; 25(20):5322-5329. PubMed ID: 30768814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability.
    Wang X; Vara M; Luo M; Huang H; Ruditskiy A; Park J; Bao S; Liu J; Howe J; Chi M; Xie Z; Xia Y
    J Am Chem Soc; 2015 Dec; 137(47):15036-42. PubMed ID: 26566188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction.
    Xiong Y; Shan H; Zhou Z; Yan Y; Chen W; Yang Y; Liu Y; Tian H; Wu J; Zhang H; Yang D
    Small; 2017 Feb; 13(7):. PubMed ID: 27860266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet-Chemical Synthesis of Concave Hexoctahedral Pd and Pd@Pt Nanocrystals for Methanol Electrooxidation.
    Wang Q; Wang S; Han X; Guo X; Huang H; Kang K; Zhao P; Xie S
    Inorg Chem; 2024 Jun; 63(24):11424-11430. PubMed ID: 38841806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
    Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J
    J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation.
    Xiong Y; Ma Y; Li J; Huang J; Yan Y; Zhang H; Wu J; Yang D
    Nanoscale; 2017 Aug; 9(31):11077-11084. PubMed ID: 28741632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation.
    Wang W; Zhang J; Yang S; Ding B; Song X
    ChemSusChem; 2013 Oct; 6(10):1945-51. PubMed ID: 23929810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction.
    Yu S; Zhang L; Zhao ZJ; Gong J
    Nanoscale; 2016 Sep; 8(37):16640-16649. PubMed ID: 27722398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets.
    Zhang Y; Wang M; Zhu E; Zheng Y; Huang Y; Huang X
    Nano Lett; 2015 Nov; 15(11):7519-25. PubMed ID: 26488237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction.
    Koenigsmann C; Santulli AC; Gong K; Vukmirovic MB; Zhou WP; Sutter E; Wong SS; Adzic RR
    J Am Chem Soc; 2011 Jun; 133(25):9783-95. PubMed ID: 21644515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pd@Pt Core-Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction.
    Datta KJ; Datta KK; Gawande MB; Ranc V; Čépe K; Malgras V; Yamauchi Y; Varma RS; Zboril R
    Chemistry; 2016 Jan; 22(5):1577-81. PubMed ID: 26455725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity.
    Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH
    J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.