These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 26708240)
1. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection. Huang H; Shi S; Gao X; Gao R; Zhu Y; Wu X; Zang R; Yao T Biosens Bioelectron; 2016 May; 79():198-204. PubMed ID: 26708240 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive fluorescence detection of heparin based on quantum dots and a functional ruthenium polypyridyl complex. Cao Y; Shi S; Wang L; Yao J; Yao T Biosens Bioelectron; 2014 May; 55():174-9. PubMed ID: 24374300 [TBL] [Abstract][Full Text] [Related]
3. A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots. Li Z; Mao G; Du M; Tian S; Niu L; Ji X; He Z Mikrochim Acta; 2019 Mar; 186(4):233. PubMed ID: 30852673 [TBL] [Abstract][Full Text] [Related]
4. Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS Chen J; Li Y; Huang Y; Zhang H; Chen X; Qiu H Mikrochim Acta; 2019 Jan; 186(2):58. PubMed ID: 30617543 [TBL] [Abstract][Full Text] [Related]
5. Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients. Hashemian Z; Khayamian T; Saraji M; Shirani MP Biosens Bioelectron; 2016 May; 79():334-40. PubMed ID: 26722763 [TBL] [Abstract][Full Text] [Related]
6. Rolling cycle amplification based single-color quantum dots-ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA. Su C; Liu Y; Ye T; Xiang X; Ji X; He Z Anal Chim Acta; 2015 Jan; 853():495-500. PubMed ID: 25467495 [TBL] [Abstract][Full Text] [Related]
7. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels. Zhang H; Hu X; Fu X Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576 [TBL] [Abstract][Full Text] [Related]
8. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. Li P; Luo C; Chen X; Huang C Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123557. PubMed ID: 37866265 [TBL] [Abstract][Full Text] [Related]
9. A molecular light switch Ru complex and quantum dots for the label-free, aptamer-based detection of thrombin. Sun W; Yao T; Shi S Analyst; 2012 Apr; 137(7):1550-2. PubMed ID: 22349091 [TBL] [Abstract][Full Text] [Related]
10. A fluorescence aptasensor based on carbon quantum dots and magnetic Fe Wei Q; Zhang P; Pu H; Sun DW Food Chem; 2022 Mar; 373(Pt B):131591. PubMed ID: 34823936 [TBL] [Abstract][Full Text] [Related]
11. A split aptamer-labeled ratiometric fluorescent biosensor for specific detection of adenosine in human urine. You J; You Z; Xu X; Ji J; Lu T; Xia Y; Wang L; Zhang L; Du S Mikrochim Acta; 2018 Dec; 186(1):43. PubMed ID: 30569231 [TBL] [Abstract][Full Text] [Related]
12. Quantum dot-ruthenium complex dyads: recognition of double-strand DNA through dual-color fluorescence detection. Zhao D; Chan WH; He Z; Qiu T Anal Chem; 2009 May; 81(9):3537-43. PubMed ID: 19351144 [TBL] [Abstract][Full Text] [Related]
14. Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. Choi JH; Chen KH; Strano MS J Am Chem Soc; 2006 Dec; 128(49):15584-5. PubMed ID: 17147356 [TBL] [Abstract][Full Text] [Related]
15. A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Zhou ZM; Yu Y; Zhao YD Analyst; 2012 Sep; 137(18):4262-6. PubMed ID: 22832507 [TBL] [Abstract][Full Text] [Related]
16. Sensitive single-color fluorescence "off-on" switch system for dsDNA detection based on quantum dots-ruthenium assembling dyads. Zhang R; Zhao D; Ding HG; Huang YX; Zhong HZ; Xie HY Biosens Bioelectron; 2014 Jun; 56():51-7. PubMed ID: 24463196 [TBL] [Abstract][Full Text] [Related]
17. A novel enzyme-free and label-free fluorescence aptasensor for amplified detection of adenosine. Fu B; Cao J; Jiang W; Wang L Biosens Bioelectron; 2013 Jun; 44():52-6. PubMed ID: 23395723 [TBL] [Abstract][Full Text] [Related]
18. Label-free fluorescent DNA sensor for the detection of silver ions based on molecular light switch Ru complex and unmodified quantum dots. Sun W; Yao J; Yao T; Shi S Analyst; 2013 Jan; 138(2):421-4. PubMed ID: 23162812 [TBL] [Abstract][Full Text] [Related]
19. Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots. Liu J; Liu Y; Yang X; Wang K; Wang Q; Shi H; Li L Anal Chem; 2013 Nov; 85(22):11121-8. PubMed ID: 24111637 [TBL] [Abstract][Full Text] [Related]
20. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides. Tang T; Deng J; Zhang M; Shi G; Zhou T Talanta; 2016; 146():55-61. PubMed ID: 26695234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]