These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26708486)

  • 41. Comparison of furfural and biogas production using pentoses as platform.
    Aristizábal-Marulanda V; Poveda-Giraldo JA; Cardona Alzate CA
    Sci Total Environ; 2020 Aug; 728():138841. PubMed ID: 32361121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-pot hydrothermal conversion of different residues to value-added chemicals usıng new acidic carbonaceous catalyst.
    Ozsel BK; Ozturk D; Nis B
    Bioresour Technol; 2019 Oct; 289():121627. PubMed ID: 31212175
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.
    Liu L; Chang HM; Jameel H; Park S
    Bioresour Technol; 2018 Mar; 252():165-171. PubMed ID: 29324276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.
    Yang Y; Hu CW; Abu-Omar MM
    ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids.
    Qu Y; Wei Q; Li H; Oleskowicz-Popiel P; Huang C; Xu J
    Bioresour Technol; 2014 Jun; 162():358-64. PubMed ID: 24768890
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclopentyl methyl ether: a green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural.
    Campos Molina MJ; Mariscal R; Ojeda M; López Granados M
    Bioresour Technol; 2012 Dec; 126():321-7. PubMed ID: 23128237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
    Rasmussen H; Sørensen HR; Meyer AS
    Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin.
    Hou XD; Smith TJ; Li N; Zong MH
    Biotechnol Bioeng; 2012 Oct; 109(10):2484-93. PubMed ID: 22511253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production.
    Jiang CX; Di JH; Su C; Yang SY; Ma CL; He YC
    Bioresour Technol; 2018 Nov; 268():315-322. PubMed ID: 30092485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.
    Peleteiro S; Santos V; Parajó JC
    Carbohydr Polym; 2016 Nov; 153():421-428. PubMed ID: 27561513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures.
    Xiao S; Liu B; Wang Y; Fang Z; Zhang Z
    Bioresour Technol; 2014 Jan; 151():361-6. PubMed ID: 24269827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.
    Daorattanachai P; Viriya-empikul N; Laosiripojana N; Faungnawakij K
    Bioresour Technol; 2013 Sep; 144():504-12. PubMed ID: 23907066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic conversion of cellulose to chemicals in ionic liquid.
    Tao F; Song H; Chou L
    Carbohydr Res; 2011 Jan; 346(1):58-63. PubMed ID: 21092940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of 5-(formyloxymethyl)furfural from biomass-derived sugars using mixed acid catalysts and upgrading into value-added chemicals.
    Dutta S
    Carbohydr Res; 2020 Nov; 497():108140. PubMed ID: 32971384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison between liquid and solid acids catalysts on reducing sugars conversion from furfural residues via pretreatments.
    Lin K; Ma B; Sun Y; Liu W
    Bioresour Technol; 2014 Sep; 167():133-6. PubMed ID: 24976491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research.
    Feng J; Fan T; Ma C; Xu Y; Jiang J; Pan H
    J Agric Food Chem; 2020 Nov; 68(47):13760-13769. PubMed ID: 33196190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse.
    An YX; Zong MH; Wu H; Li N
    Bioresour Technol; 2015 Sep; 192():165-71. PubMed ID: 26026293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system.
    Yang W; Li P; Bo D; Chang H; Wang X; Zhu T
    Bioresour Technol; 2013 Apr; 133():361-9. PubMed ID: 23434814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revolutionizing lignocellulosic biomass: A review of harnessing the power of ionic liquids for sustainable utilization and extraction.
    Norfarhana AS; Ilyas RA; Ngadi N; Othman MHD; Misenan MSM; Norrrahim MNF
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128256. PubMed ID: 38000585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.