These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26708709)

  • 1. Biostable electrospun microfibrous scaffolds mitigate hypertrophic scar contraction in an immune-competent murine model.
    Lorden ER; Miller KJ; Ibrahim MM; Bashirov L; Hammett E; Chakraborty S; Quiles-Torres C; Selim MA; Leong KW; Levinson H
    Acta Biomater; 2016 Mar; 32():100-109. PubMed ID: 26708709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold.
    Lorden ER; Miller KJ; Bashirov L; Ibrahim MM; Hammett E; Jung Y; Medina MA; Rastegarpour A; Selim MA; Leong KW; Levinson H
    Biomaterials; 2015 Mar; 43():61-70. PubMed ID: 25591962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.
    Bonvallet PP; Schultz MJ; Mitchell EH; Bain JL; Culpepper BK; Thomas SJ; Bellis SL
    PLoS One; 2015; 10(3):e0122359. PubMed ID: 25793720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel immune competent murine hypertrophic scar contracture model: a tool to elucidate disease mechanism and develop new therapies.
    Ibrahim MM; Bond J; Bergeron A; Miller KJ; Ehanire T; Quiles C; Lorden ER; Medina MA; Fisher M; Klitzman B; Selim MA; Leong KW; Levinson H
    Wound Repair Regen; 2014; 22(6):755-64. PubMed ID: 25327261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds accelerate wound healing and inhibit hypertrophic scar formation in a rabbit ear model.
    Jiang Z; Zhao L; He F; Tan H; Li Y; Tang Y; Duan X; Li Y
    J Biomater Appl; 2021 Feb; 35(7):869-886. PubMed ID: 32799702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin.
    Sun X; Cheng L; Zhu W; Hu C; Jin R; Sun B; Shi Y; Zhang Y; Cui W
    Colloids Surf B Biointerfaces; 2014 Mar; 115():61-70. PubMed ID: 24333554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars.
    Cheng L; Sun X; Zhao X; Wang L; Yu J; Pan G; Li B; Yang H; Zhang Y; Cui W
    Biomaterials; 2016 Mar; 83():169-81. PubMed ID: 26774564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of myofibroblast on contracture of hypertrophic scar.
    Shin D; Minn KW
    Plast Reconstr Surg; 2004 Feb; 113(2):633-40. PubMed ID: 14758226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical tension stimulates the transdifferentiation of fibroblasts into myofibroblasts in human burn scars.
    Junker JP; Kratz C; Tollbäck A; Kratz G
    Burns; 2008 Nov; 34(7):942-6. PubMed ID: 18472340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation.
    Zhu Z; Ding J; Ma Z; Iwashina T; Tredget EE
    Wound Repair Regen; 2016 Jul; 24(4):644-56. PubMed ID: 27169512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-situ forming skin substitute improves healing outcome in a hypertrophic scar model.
    Hartwell R; Poormasjedi-Meibod MS; Chavez-Munoz C; Jalili RB; Hossenini-Tabatabaei A; Ghahary A
    Tissue Eng Part A; 2015 Mar; 21(5-6):1085-94. PubMed ID: 25412924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of wound contraction. Basic and clinical features.
    Nedelec B; Ghahary A; Scott PG; Tredget EE
    Hand Clin; 2000 May; 16(2):289-302. PubMed ID: 10791174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis - Keloids and hypertrophic scars may be vascular disorders.
    Ogawa R; Akaishi S
    Med Hypotheses; 2016 Nov; 96():51-60. PubMed ID: 27959277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars.
    Xu T; Yang R; Ma X; Chen W; Liu S; Liu X; Cai X; Xu H; Chi B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900123. PubMed ID: 30972958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myofibroblasts and apoptosis in human hypertrophic scars: the effect of interferon-alpha2b.
    Nedelec B; Shankowsky H; Scott PG; Ghahary A; Tredget EE
    Surgery; 2001 Nov; 130(5):798-808. PubMed ID: 11685189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk factors for hypertrophic burn scar pain, pruritus, and paresthesia development.
    Xiao Y; Sun Y; Zhu B; Wang K; Liang P; Liu W; Fu J; Zheng S; Xiao S; Xia Z
    Wound Repair Regen; 2018 Mar; 26(2):172-181. PubMed ID: 29719102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun Polyurethane-Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds.
    Sheikholeslam M; Wright MEE; Cheng N; Oh HH; Wang Y; Datu AK; Santerre JP; Amini-Nik S; Jeschke MG
    ACS Biomater Sci Eng; 2020 Jan; 6(1):505-516. PubMed ID: 33463197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(lactide-co-ε-caprolactone) scaffold promotes equivalent tissue integration and supports skin grafts compared to a predicate collagen scaffold.
    Ruppert DS; Mohammed MM; Ibrahim MM; Bachtiar EO; Erning K; Ansari K; Everitt JI; Brown D; Klitzman B; Koshut W; Gall K; Levinson H
    Wound Repair Regen; 2021 Nov; 29(6):1035-1050. PubMed ID: 34129714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.