BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1406 related articles for article (PubMed ID: 26708732)

  • 41. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury.
    Maier IC; Baumann K; Thallmair M; Weinmann O; Scholl J; Schwab ME
    J Neurosci; 2008 Sep; 28(38):9386-403. PubMed ID: 18799672
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans.
    Yamaguchi T; Beck MM; Therkildsen ER; Svane C; Forman C; Lorentzen J; Conway BA; Lundbye-Jensen J; Geertsen SS; Nielsen JB
    Physiol Rep; 2020 Aug; 8(16):e14531. PubMed ID: 32812363
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transneuronal Downregulation of the Premotor Cholinergic System After Corticospinal Tract Loss.
    Jiang YQ; Sarkar A; Amer A; Martin JH
    J Neurosci; 2018 Sep; 38(39):8329-8344. PubMed ID: 30049887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses.
    Fouad K; Pedersen V; Schwab ME; Brösamle C
    Curr Biol; 2001 Nov; 11(22):1766-70. PubMed ID: 11719218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury.
    Jo HJ; Perez MA
    Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion.
    Bazley FA; Hu C; Maybhate A; Pourmorteza A; Pashai N; Thakor NV; Kerr CL; All AH
    J Neurosurg Spine; 2012 Apr; 16(4):414-23. PubMed ID: 22303873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury.
    Weishaupt N; Li S; Di Pardo A; Sipione S; Fouad K
    Behav Brain Res; 2013 Feb; 239():31-42. PubMed ID: 23131414
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
    Gennaro M; Mattiello A; Mazziotti R; Antonelli C; Gherardini L; Guzzetta A; Berardi N; Cioni G; Pizzorusso T
    Front Neural Circuits; 2017; 11():47. PubMed ID: 28706475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions.
    Brus-Ramer M; Carmel JB; Martin JH
    J Neurosci; 2009 May; 29(19):6196-206. PubMed ID: 19439597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery.
    Klapka N; Hermanns S; Straten G; Masanneck C; Duis S; Hamers FP; Müller D; Zuschratter W; Müller HW
    Eur J Neurosci; 2005 Dec; 22(12):3047-58. PubMed ID: 16367771
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function.
    Carmel JB; Martin JH
    Front Integr Neurosci; 2014; 8():51. PubMed ID: 24994971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.
    Liu JL; Wang S; Chen ZH; Wu RJ; Yu HY; Yang SB; Xu J; Guo YN; Ding Y; Li G; Zeng X; Ma YH; Gong YL; Wu CR; Zhang LX; Zeng YS; Lai BQ
    Front Immunol; 2023; 14():1153516. PubMed ID: 37388732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cervical trans-spinal direct current stimulation: a modelling-experimental approach.
    Fernandes SR; Pereira M; Salvador R; Miranda PC; de Carvalho M
    J Neuroeng Rehabil; 2019 Oct; 16(1):123. PubMed ID: 31653265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes.
    Kazim SF; Bowers CA; Cole CD; Varela S; Karimov Z; Martinez E; Ogulnick JV; Schmidt MH
    Mol Neurobiol; 2021 Nov; 58(11):5494-5516. PubMed ID: 34341881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury.
    Wu W; Nguyen T; Ordaz JD; Zhang Y; Liu NK; Hu X; Liu Y; Ping X; Han Q; Wu X; Qu W; Gao S; Shields CB; Jin X; Xu XM
    JCI Insight; 2022 Jun; 7(12):. PubMed ID: 35552276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ipsilesional Motor Cortex Plasticity Participates in Spontaneous Hindlimb Recovery after Lateral Hemisection of the Thoracic Spinal Cord in the Rat.
    Brown AR; Martinez M
    J Neurosci; 2018 Nov; 38(46):9977-9988. PubMed ID: 30301755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spinal cord associative plasticity improves forelimb sensorimotor function after cervical injury.
    Pal A; Park H; Ramamurthy A; Asan AS; Bethea T; Johnkutty M; Carmel JB
    Brain; 2022 Dec; 145(12):4531-4544. PubMed ID: 36063483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 71.