These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26709051)

  • 1. Assessment of chemical and material contamination in waste wood fuels--A case study ranging over nine years.
    Edo M; Björn E; Persson PE; Jansson S
    Waste Manag; 2016 Mar; 49():311-319. PubMed ID: 26709051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.
    Saqib N; Bäckström M
    J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.
    Saqib N; Bäckström M
    Waste Manag; 2014 Dec; 34(12):2505-19. PubMed ID: 25263218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation.
    Yan J; Karlsson A; Zou Z; Dai D; Edlund U
    Sci Total Environ; 2020 Jan; 700():134382. PubMed ID: 31698270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and chemical evaluation of furniture waste briquettes.
    Moreno AI; Font R; Conesa JA
    Waste Manag; 2016 Mar; 49():245-252. PubMed ID: 26856442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.
    Boldrin A; Andersen JK; Christensen TH
    Waste Manag; 2011 Jul; 31(7):1560-9. PubMed ID: 21316210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production.
    Vrancken C; Longhurst PJ; Wagland ST
    Waste Manag; 2017 Mar; 61():40-57. PubMed ID: 28139367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of heavy metal contamination in Swedish wood waste used for combustion.
    Krook J; Mårtensson A; Eklund M
    Waste Manag; 2006; 26(2):158-66. PubMed ID: 16198553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fuels from waste composition with application of genetic algorithm.
    Małgorzata W
    Waste Manag Res; 2014 May; 32(5):423-33. PubMed ID: 24718361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels.
    Garcés D; Díaz E; Sastre H; Ordóñez S; González-LaFuente JM
    Waste Manag; 2016 Jan; 47(Pt B):164-73. PubMed ID: 26318421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of different waste biomass for energy application.
    Motghare KA; Rathod AP; Wasewar KL; Labhsetwar NK
    Waste Manag; 2016 Jan; 47(Pt A):40-5. PubMed ID: 26303650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid recovered fuel: An experiment on classification and potential applications.
    Bessi C; Lombardi L; Meoni R; Canovai A; Corti A
    Waste Manag; 2016 Jan; 47(Pt B):184-94. PubMed ID: 26298482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving forces for import of waste for energy recovery in Sweden.
    Olofsson M; Sahlin J; Ekvall T; Sundberg J
    Waste Manag Res; 2005 Feb; 23(1):3-12. PubMed ID: 15751390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of fossil carbon content in Swedish waste fuel by four different methods.
    Jones FC; Blomqvist EW; Bisaillon M; Lindberg DK; Hupa M
    Waste Manag Res; 2013 Oct; 31(10):1052-61. PubMed ID: 23754147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods.
    Doležalová M; Benešová L; Závodská A
    Waste Manag; 2013 Sep; 33(9):1950-7. PubMed ID: 23746985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of biogas production from food waste and sewage sludge - Environmental and economic life cycle performance.
    Eriksson O; Bisaillon M; Haraldsson M; Sundberg J
    J Environ Manage; 2016 Jun; 175():33-9. PubMed ID: 27038432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality control of waste to incineration--waste composition analysis in Lidköping, Sweden.
    Petersen CM; Berg PE; Rönnegård L
    Waste Manag Res; 2005 Dec; 23(6):527-33. PubMed ID: 16379121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of excavated fine fraction and waste composition from a Swedish landfill.
    Jani Y; Kaczala F; Marchand C; Hogland M; Kriipsalu M; Hogland W; Kihl A
    Waste Manag Res; 2016 Dec; 34(12):1292-1299. PubMed ID: 27742875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of solid and vapor products from thermochemical conversion of municipal solid waste woody fractions.
    Ayiania M; Terrell E; Dunsmoor A; Carbajal-Gamarra FM; Garcia-Perez M
    Waste Manag; 2019 Feb; 84():277-285. PubMed ID: 30691902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong.
    Woon KS; Lo IM
    Waste Manag; 2016 Jan; 47(Pt A):3-10. PubMed ID: 25890872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.