These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 26709125)
41. Adhesion and proliferation of human fibroblasts on sol-gel coated titania. Meretoja VV; Rossi S; Peltola T; Pelliniemi LJ; Närhi TO J Biomed Mater Res A; 2010 Oct; 95(1):269-75. PubMed ID: 20607871 [TBL] [Abstract][Full Text] [Related]
42. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Costa RC; Nagay BE; Dini C; Borges MHR; Miranda LFB; Cordeiro JM; Souza JGS; Sukotjo C; Cruz NC; Barão VAR Adv Colloid Interface Sci; 2023 Jan; 311():102805. PubMed ID: 36434916 [TBL] [Abstract][Full Text] [Related]
43. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Jung O; Smeets R; Porchetta D; Kopp A; Ptock C; Müller U; Heiland M; Schwade M; Behr B; Kröger N; Kluwe L; Hanken H; Hartjen P Acta Biomater; 2015 Sep; 23():354-363. PubMed ID: 26073090 [TBL] [Abstract][Full Text] [Related]
44. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics. Harcuba P; Bačáková L; Stráský J; Bačáková M; Novotná K; Janeček M J Mech Behav Biomed Mater; 2012 Mar; 7():96-105. PubMed ID: 22340689 [TBL] [Abstract][Full Text] [Related]
45. Effects of nanometric roughness on surface properties and fibroblast's initial cytocompatibilities of Ti6Al4V. Wang RC; Hsieh MC; Lee TM Biointerphases; 2011 Sep; 6(3):87. PubMed ID: 21974679 [TBL] [Abstract][Full Text] [Related]
46. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
47. In vitro biocompatibility of a new titanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells. Naganawa T; Ishihara Y; Iwata T; Koide M; Ohguchi M; Ohguchi Y; Murase Y; Kamei H; Sato N; Mizuno M; Noguchi T J Periodontol; 2004 Dec; 75(12):1701-7. PubMed ID: 15732874 [TBL] [Abstract][Full Text] [Related]
48. Effect of titanium implant surface nanoroughness and calcium phosphate low impregnation on bone cell activity in vitro. Bucci-Sabattini V; Cassinelli C; Coelho PG; Minnici A; Trani A; Dohan Ehrenfest DM Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Feb; 109(2):217-24. PubMed ID: 20031453 [TBL] [Abstract][Full Text] [Related]
49. The feasibility of eco-friendly electrical discharge machining for surface modification of Ti: A comparison study in surface properties, bioactivity, and cytocompatibility. Wang YH; Liao CC; Chen YC; Ou SF; Chiu CY Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110192. PubMed ID: 31923966 [TBL] [Abstract][Full Text] [Related]
50. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Xu L; Pan F; Yu G; Yang L; Zhang E; Yang K Biomaterials; 2009 Mar; 30(8):1512-23. PubMed ID: 19111896 [TBL] [Abstract][Full Text] [Related]
51. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457 [TBL] [Abstract][Full Text] [Related]
52. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Park JW; Kim YJ; Jang JH; Kwon TG; Bae YC; Suh JY Acta Biomater; 2010 Apr; 6(4):1661-70. PubMed ID: 19819355 [TBL] [Abstract][Full Text] [Related]
53. Innovative surface modification of Ti-6Al-4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Havlikova J; Strasky J; Vandrovcova M; Harcuba P; Mhaede M; Janecek M; Bacakova L Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():371-9. PubMed ID: 24863238 [TBL] [Abstract][Full Text] [Related]
54. Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces. Guida L; Oliva A; Basile MA; Giordano M; Nastri L; Annunziata M J Dent; 2013 Oct; 41(10):900-7. PubMed ID: 23907085 [TBL] [Abstract][Full Text] [Related]
55. Osteoblast-like cell attachment and proliferation on turned, blasted, and anodized titanium surfaces. Pae A; Kim SS; Kim HS; Woo YH Int J Oral Maxillofac Implants; 2011; 26(3):475-81. PubMed ID: 21691593 [TBL] [Abstract][Full Text] [Related]
56. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786 [TBL] [Abstract][Full Text] [Related]
57. Evaluation of Fibroblasts Cells Viability and Adhesion on Six Different Titanium Surfaces: An in vitro Experimental Study. Perez-Diaz L; Dedavid BA; Gehrke SA Recent Pat Biotechnol; 2018; 12(2):145-153. PubMed ID: 29295701 [TBL] [Abstract][Full Text] [Related]
58. Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy. Wu C; Chen M; Zheng T; Yang X Biomed Mater Eng; 2015; 26 Suppl 1():S155-64. PubMed ID: 26405920 [TBL] [Abstract][Full Text] [Related]
59. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy. Huang R; Lu S; Han Y Colloids Surf B Biointerfaces; 2013 Nov; 111():232-41. PubMed ID: 23831591 [TBL] [Abstract][Full Text] [Related]
60. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography. Altmann B; Kohal RJ; Steinberg T; Tomakidi P; Bächle-Haas M; Wennerberg A; Att W Tissue Eng Part C Methods; 2013 Nov; 19(11):850-63. PubMed ID: 23581275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]