These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2670922)
21. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects. Sun DP; Zou M; Ho NT; Ho C Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146 [TBL] [Abstract][Full Text] [Related]
22. Characteristic of aromatic amino acid substitution at alpha 96 of hemoglobin. Choi JW; Lee JH; Lee KH; Lee HW; Sohn JH; Yoon JH; Yeh BI; Park SK; Lee KJ; Kim HW J Biochem Mol Biol; 2005 Jan; 38(1):115-9. PubMed ID: 15715956 [TBL] [Abstract][Full Text] [Related]
23. Proton nuclear magnetic resonance studies of hemoglobin Malmö: implications of mutations at homologous positions of the alpha and beta chains. Wiechelman KJ; Fairbanks VF; Ho C Biochemistry; 1976 Apr; 15(7):1414-20. PubMed ID: 1259945 [TBL] [Abstract][Full Text] [Related]
24. Proton nuclear magnetic resonance investigation of cross-linked asymmetrically modified hemoglobins: influence of the salt bridges on tertiary and quaternary structures of hemoglobin. Miura S; Ho C Biochemistry; 1984 May; 23(11):2492-9. PubMed ID: 6477880 [TBL] [Abstract][Full Text] [Related]
25. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Hu X; Spiro TG Biochemistry; 1997 Dec; 36(50):15701-12. PubMed ID: 9398299 [TBL] [Abstract][Full Text] [Related]
26. A proton nuclear magnetic resonance study of the quaternary structure of human homoglobins in water. Fung LW; Ho C Biochemistry; 1975 Jun; 14(11):2526-35. PubMed ID: 1138870 [TBL] [Abstract][Full Text] [Related]
29. Site-directed mutagenesis in hemoglobin: functional and structural role of the penultimate tyrosine in the alpha subunit. Ishimori K; Hashimoto M; Imai K; Fushitani K; Miyazaki G; Morimoto H; Wada Y; Morishima I Biochemistry; 1994 Mar; 33(9):2546-53. PubMed ID: 8117715 [TBL] [Abstract][Full Text] [Related]
30. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study. Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661 [TBL] [Abstract][Full Text] [Related]
31. Assignment of tyrosine resonances in the 1H-NMR spectrum of tryptophan synthase alpha-subunit. Monitoring conformational changes due to substitutions at position 49. Sawada S; Akutsu H; Ogasahara K; Yutani K Eur J Biochem; 1990 May; 189(3):667-73. PubMed ID: 2190828 [TBL] [Abstract][Full Text] [Related]
32. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins. A probe for the heme pocket. Takahashi S; Lin AK; Ho C Biophys J; 1982 Jul; 39(1):33-40. PubMed ID: 7104448 [TBL] [Abstract][Full Text] [Related]
33. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state. Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247 [TBL] [Abstract][Full Text] [Related]
34. Spectroscopic study of Ser92 mutants of human myoglobin: hydrogen bonding effect of Ser92 to proximal His93 on structure and property of myoglobin. Shiro Y; Iizuka T; Marubayashi K; Ogura T; Kitagawa T; Balasubramanian S; Boxer SG Biochemistry; 1994 Dec; 33(50):14986-92. PubMed ID: 7999755 [TBL] [Abstract][Full Text] [Related]
35. High resolution NMR studies of histidine-substituted and histidine-perturbed hemoglobin variants. Histidine assignments, electrostatic interactions at the protein surface, and implications for hemoglobin S polymerization. Craescu CT; Schaeffer C; Mispelter J; Garin J; Rosa J J Biol Chem; 1986 Jun; 261(17):7894-901. PubMed ID: 3711114 [TBL] [Abstract][Full Text] [Related]
36. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine. Cheng Y; Shen TJ; Simplaceanu V; Ho C Biochemistry; 2002 Oct; 41(39):11901-13. PubMed ID: 12269835 [TBL] [Abstract][Full Text] [Related]
37. The structural basis for the perturbed pKa of the catalytic base in 4-oxalocrotonate tautomerase: kinetic and structural effects of mutations of Phe-50. Czerwinski RM; Harris TK; Massiah MA; Mildvan AS; Whitman CP Biochemistry; 2001 Feb; 40(7):1984-95. PubMed ID: 11329265 [TBL] [Abstract][Full Text] [Related]
38. Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six tyrosine --> phenylalanine mutants. Yamagata Y; Kubota M; Sumikawa Y; Funahashi J; Takano K; Fujii S; Yutani K Biochemistry; 1998 Jun; 37(26):9355-62. PubMed ID: 9649316 [TBL] [Abstract][Full Text] [Related]
39. Pseudoreversion of the catalytic activity of Y14F by the additional substitution(s) of tyrosine with phenylalanine in the hydrogen bond network of delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. Choi G; Ha NC; Kim MS; Hong BH; Oh BH; Choi KY Biochemistry; 2001 Jun; 40(23):6828-35. PubMed ID: 11389596 [TBL] [Abstract][Full Text] [Related]
40. Mutation of tyrosine 34 to phenylalanine eliminates the active site pK of reduced iron-containing superoxide dismutase. Sorkin DL; Duong DK; Miller AF Biochemistry; 1997 Jul; 36(27):8202-8. PubMed ID: 9204864 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]