These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26709296)

  • 1. Analytical characterisation of nanoscale zero-valent iron: A methodological review.
    Chekli L; Bayatsarmadi B; Sekine R; Sarkar B; Shen AM; Scheckel KG; Skinner W; Naidu R; Shon HK; Lombi E; Donner E
    Anal Chim Acta; 2016 Jan; 903():13-35. PubMed ID: 26709296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.
    Zhao X; Liu W; Cai Z; Han B; Qian T; Zhao D
    Water Res; 2016 Sep; 100():245-266. PubMed ID: 27206054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.
    Zhang X; Lin S; Chen Z; Megharaj M; Naidu R
    Water Res; 2011 May; 45(11):3481-8. PubMed ID: 21529878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules.
    Fatisson J; Ghoshal S; Tufenkji N
    Langmuir; 2010 Aug; 26(15):12832-40. PubMed ID: 20593855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study.
    Wei YT; Wu SC; Chou CM; Che CH; Tsai SM; Lien HL
    Water Res; 2010 Jan; 44(1):131-40. PubMed ID: 19800096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity.
    Yan W; Herzing AA; Li XQ; Kiely CJ; Zhang WX
    Environ Sci Technol; 2010 Jun; 44(11):4288-94. PubMed ID: 20446741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
    Tiraferri A; Chen KL; Sethi R; Elimelech M
    J Colloid Interface Sci; 2008 Aug; 324(1-2):71-9. PubMed ID: 18508073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments.
    Paar H; Ruhl AS; Jekel M
    Water Res; 2015 Jan; 68():731-9. PubMed ID: 25462777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation.
    Jang MH; Lim M; Hwang YS
    Environ Health Toxicol; 2014; 29():e2014022. PubMed ID: 25518840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology.
    Crane RA; Scott TB
    J Hazard Mater; 2012 Apr; 211-212():112-25. PubMed ID: 22305041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass.
    Honetschlägerová L; Janouškovcová P; Kubal M; Sofer Z
    Environ Technol; 2015; 36(1-4):358-65. PubMed ID: 25323113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
    Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A
    J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.
    Sun Z; Zheng S; Ayoko GA; Frost RL; Xi Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():768-77. PubMed ID: 24231330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17200-9. PubMed ID: 27215990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.
    Kirschling TL; Gregory KB; Minkley EG; Lowry GV; Tilton RD
    Environ Sci Technol; 2010 May; 44(9):3474-80. PubMed ID: 20350000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.
    Sun Y; Ding C; Cheng W; Wang X
    J Hazard Mater; 2014 Sep; 280():399-408. PubMed ID: 25194557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of field demonstration nanoscale zero-valent iron in groundwater remediation: A review.
    Chen H; Qian L
    Sci Total Environ; 2024 Feb; 912():169268. PubMed ID: 38081425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.