BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26709947)

  • 1. Identification of Metal Oxide Nanoparticles in Histological Samples by Enhanced Darkfield Microscopy and Hyperspectral Mapping.
    Roth GA; Sosa Peña Mdel P; Neu-Baker NM; Tahiliani S; Brenner SA
    J Vis Exp; 2015 Dec; (106):e53317. PubMed ID: 26709947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification.
    Peña Mdel P; Gottipati A; Tahiliani S; Neu-Baker NM; Frame MD; Friedman AJ; Brenner SA
    Microsc Res Tech; 2016 May; 79(5):349-58. PubMed ID: 26864497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa.
    Mortimer M; Gogos A; Bartolomé N; Kahru A; Bucheli TD; Slaveykova VI
    Environ Sci Technol; 2014; 48(15):8760-7. PubMed ID: 25000358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of hyperspectral classification methods for the analysis of cerium oxide nanoparticles in histological and aqueous samples.
    Idelchik MPS; Dillon J; Abariute L; Guttenberg MA; Segarceanu A; Neu-Baker NM; Brenner SA
    J Microsc; 2018 Jul; 271(1):69-83. PubMed ID: 29630741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging metal oxide nanoparticles in biological structures with CARS microscopy.
    Moger J; Johnston BD; Tyler CR
    Opt Express; 2008 Mar; 16(5):3408-19. PubMed ID: 18542432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral microscopy as an analytical tool for nanomaterials.
    Roth GA; Tahiliani S; Neu-Baker NM; Brenner SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(4):565-79. PubMed ID: 25611199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral data influenced by sample matrix: the importance of building relevant reference spectral libraries to map materials of interest.
    Dillon JCK; Bezerra L; Del Pilar Sosa Peña M; Neu-Baker NM; Brenner SA
    Microsc Res Tech; 2017 May; 80(5):462-470. PubMed ID: 28139043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological skin morphology enhancement base on molecular hyperspectral imaging technology.
    Li Q; Sun Z; Wang Y; Liu H; Guo F; Zhu J
    Skin Res Technol; 2014 Aug; 20(3):332-40. PubMed ID: 24267453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells.
    Patskovsky S; Bergeron E; Meunier M
    J Biophotonics; 2015 Jan; 8(1-2):162-7. PubMed ID: 24343875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy.
    Guttenberg M; Bezerra L; Neu-Baker NM; Del Pilar Sosa Idelchik M; Elder A; Oberdörster G; Brenner SA
    J Biophotonics; 2016 Oct; 9(10):987-993. PubMed ID: 27528427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic metal oxides for the extraction of nanoparticles from water.
    Mallampati R; Valiyaveettil S
    Nanoscale; 2013 Apr; 5(8):3395-9. PubMed ID: 23471156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research.
    Fakhrullin R; Nigamatzyanova L; Fakhrullina G
    Sci Total Environ; 2021 Jun; 772():145478. PubMed ID: 33571774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample preparation method for visualization of nanoparticulate captured on mixed cellulose ester filter media by enhanced darkfield microscopy and hyperspectral imaging.
    Neu-Baker NM; Eastlake AC; Brenner SA
    Microsc Res Tech; 2019 Jun; 82(6):878-883. PubMed ID: 30768825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of metal oxides (CeO
    Gnanasekaran L; Hemamalini R; Saravanan R; Ravichandran K; Gracia F; Agarwal S; Gupta VK
    J Photochem Photobiol B; 2017 Aug; 173():43-49. PubMed ID: 28558305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Oxide Based Metallic Nanoparticles and their Some Biological and Environmental Application.
    Khan AAP; Khan A; Asiri AM; Ashraf GM; Alhogbia BG
    Curr Drug Metab; 2017; 18(11):1020-1029. PubMed ID: 29034831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow nanoparticles of metal oxides and sulfides: fast preparation via laser ablation in liquid.
    Niu KY; Yang J; Kulinich SA; Sun J; Du XW
    Langmuir; 2010 Nov; 26(22):16652-7. PubMed ID: 20942423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of metal oxide nanoparticles with lung surfactant protein A.
    Schulze C; Schaefer UF; Ruge CA; Wohlleben W; Lehr CM
    Eur J Pharm Biopharm; 2011 Apr; 77(3):376-83. PubMed ID: 21056657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.