These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26709980)

  • 1. Imaging Local Electric Field Distribution by Plasmonic Impedance Microscopy.
    Wang Y; Shan X; Wang S; Tao N; Blanchard PY; Hu K; Mirkin MV
    Anal Chem; 2016 Feb; 88(3):1547-52. PubMed ID: 26709980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-based detection of small molecules by plasmonic-based electrochemical impedance microscopy.
    MacGriff C; Wang S; Wiktor P; Wang W; Shan X; Tao N
    Anal Chem; 2013 Jul; 85(14):6682-7. PubMed ID: 23815069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM).
    Morris CA; Chen CC; Baker LA
    Analyst; 2012 Jul; 137(13):2933-8. PubMed ID: 22278118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning electrochemical impedance microscopy for investigation of glucose oxidase catalyzed reaction.
    Morkvenaite-Vilkonciene I; Genys P; Ramanaviciene A; Ramanavicius A
    Colloids Surf B Biointerfaces; 2015 Feb; 126():598-602. PubMed ID: 25620444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging local electrochemical current via surface plasmon resonance.
    Shan X; Patel U; Wang S; Iglesias R; Tao N
    Science; 2010 Mar; 327(5971):1363-6. PubMed ID: 20223983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous visualization of surface topography and concentration field by means of scanning electrochemical microscopy using a single electrochemical probe and impedance spectroscopy.
    Pähler M; Schuhmann W; Gratzl M
    Chemphyschem; 2011 Oct; 12(15):2798-805. PubMed ID: 22002894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy.
    Wang W; Foley K; Shan X; Wang S; Eaton S; Nagaraj VJ; Wiktor P; Patel U; Tao N
    Nat Chem; 2011 Mar; 3(3):249-55. PubMed ID: 21336333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy.
    Wang Y; Shan X; Cui F; Li J; Wang S; Tao N
    Anal Chem; 2015 Jan; 87(1):494-8. PubMed ID: 25479127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations.
    Corović S; Pavlin M; Miklavcic D
    Biomed Eng Online; 2007 Oct; 6():37. PubMed ID: 17937793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface impedance imaging technique.
    Foley KJ; Shan X; Tao NJ
    Anal Chem; 2008 Jul; 80(13):5146-51. PubMed ID: 18484741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface charge mapping with a nanopipette.
    McKelvey K; Kinnear SL; Perry D; Momotenko D; Unwin PR
    J Am Chem Soc; 2014 Oct; 136(39):13735-44. PubMed ID: 25181551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode.
    Song YY; Li Y; Yang C; Xia XH
    Anal Bioanal Chem; 2008 Jan; 390(1):333-41. PubMed ID: 17955215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy.
    Shkirskiy V; Kang M; McPherson IJ; Bentley CL; Wahab OJ; Daviddi E; Colburn AW; Unwin PR
    Anal Chem; 2020 Sep; 92(18):12509-12517. PubMed ID: 32786472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Visualization of Molecular Delivery and Uptake at Living Cells with Self-Referencing Scanning Ion Conductance Microscopy-Scanning Electrochemical Microscopy.
    Page A; Kang M; Armitstead A; Perry D; Unwin PR
    Anal Chem; 2017 Mar; 89(5):3021-3028. PubMed ID: 28264566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of potential averaging over the finite surface of a bioelectric surface electrode.
    van Dijk JP; Lowery MM; Lapatki BG; Stegeman DF
    Ann Biomed Eng; 2009 Jun; 37(6):1141-51. PubMed ID: 19319681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Roughening of Thin-Film Platinum Macro and Microelectrodes.
    Ivanovskaya AN; Belle AM; Yorita A; Qian F; Chen S; Tooker A; Lozada RG; Dahlquist D; Tolosa V
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative configuration scheme for signal amplification with scanning ion conductance microscopy.
    Kim J; Kim SO; Cho NJ
    Rev Sci Instrum; 2015 Feb; 86(2):023706. PubMed ID: 25725851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential-Concentration Scanning Ion Conductance Microscopy.
    Perry D; Page A; Chen B; Frenguelli BG; Unwin PR
    Anal Chem; 2017 Nov; 89(22):12458-12465. PubMed ID: 28992688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.