These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 26710256)
1. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae. Germann SM; Baallal Jacobsen SA; Schneider K; Harrison SJ; Jensen NB; Chen X; Stahlhut SG; Borodina I; Luo H; Zhu J; Maury J; Forster J Biotechnol J; 2016 May; 11(5):717-24. PubMed ID: 26710256 [TBL] [Abstract][Full Text] [Related]
2. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related]
3. Microbial Synthesis of Human-Hormone Melatonin at Gram Scales. Luo H; Schneider K; Christensen U; Lei Y; Herrgard M; Palsson BØ ACS Synth Biol; 2020 Jun; 9(6):1240-1245. PubMed ID: 32501000 [TBL] [Abstract][Full Text] [Related]
4. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867 [TBL] [Abstract][Full Text] [Related]
6. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106 [TBL] [Abstract][Full Text] [Related]
7. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae. Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Guo W; Sheng J; Zhao H; Feng X Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023 [TBL] [Abstract][Full Text] [Related]
9. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
10. Mating of 2 Laboratory Saccharomyces cerevisiae Strains Resulted in Enhanced Production of 2-Phenylethanol by Biotransformation of L-Phenylalanine. Mierzejewska J; Tymoszewska A; Chreptowicz K; Krol K J Mol Microbiol Biotechnol; 2017; 27(2):81-90. PubMed ID: 28231564 [TBL] [Abstract][Full Text] [Related]
11. Optimization of yeast-based production of medicinal protoberberine alkaloids. Galanie S; Smolke CD Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Engineering of Xiao F; Lian J; Tu S; Xie L; Li J; Zhang F; Linhardt RJ; Huang H; Zhong W ACS Synth Biol; 2022 Feb; 11(2):800-811. PubMed ID: 35107250 [TBL] [Abstract][Full Text] [Related]
13. Production of melatonin by Saccharomyces strains under growth and fermentation conditions. Rodriguez-Naranjo MI; Torija MJ; Mas A; Cantos-Villar E; Garcia-Parrilla Mdel C J Pineal Res; 2012 Oct; 53(3):219-24. PubMed ID: 22515683 [TBL] [Abstract][Full Text] [Related]
14. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Dai Z; Liu Y; Huang L; Zhang X Biotechnol Bioeng; 2012 Nov; 109(11):2845-53. PubMed ID: 22566191 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Yin H; Hu T; Zhuang Y; Liu T Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241 [TBL] [Abstract][Full Text] [Related]
16. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
17. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328 [TBL] [Abstract][Full Text] [Related]
18. De Novo High-Titer Production of Delta-Tocotrienol in Recombinant Sun H; Yang J; Lin X; Li C; He Y; Cai Z; Zhang G; Song H J Agric Food Chem; 2020 Jul; 68(29):7710-7717. PubMed ID: 32580548 [TBL] [Abstract][Full Text] [Related]
19. Production of squalene by microbes: an update. Xu W; Ma X; Wang Y World J Microbiol Biotechnol; 2016 Dec; 32(12):195. PubMed ID: 27730499 [TBL] [Abstract][Full Text] [Related]
20. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]