These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 26710256)
21. Combining protein and metabolic engineering strategies for biosynthesis of melatonin in Escherichia coli. Zhang Y; He Y; Zhang N; Gan J; Zhang S; Dong Z Microb Cell Fact; 2021 Aug; 20(1):170. PubMed ID: 34454478 [TBL] [Abstract][Full Text] [Related]
22. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Zhou P; Xie W; Li A; Wang F; Yao Z; Bian Q; Zhu Y; Yu H; Ye L Enzyme Microb Technol; 2017 May; 100():28-36. PubMed ID: 28284309 [TBL] [Abstract][Full Text] [Related]
23. Engineering yeast for high-level production of stilbenoid antioxidants. Li M; Schneider K; Kristensen M; Borodina I; Nielsen J Sci Rep; 2016 Nov; 6():36827. PubMed ID: 27833117 [TBL] [Abstract][Full Text] [Related]
24. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH; Song H; Li BZ; Yuan YJ Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118 [TBL] [Abstract][Full Text] [Related]
25. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Jo JH; Oh SY; Lee HS; Park YC; Seo JH Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683 [TBL] [Abstract][Full Text] [Related]
26. Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Gupta A; Hicks MA; Manchester SP; Prather KL Biotechnol J; 2016 Sep; 11(9):1201-8. PubMed ID: 27312887 [TBL] [Abstract][Full Text] [Related]
27. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production. Kuroda K; Ueda M FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533 [TBL] [Abstract][Full Text] [Related]
28. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
29. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [TBL] [Abstract][Full Text] [Related]
30. Metabolic Engineering of Kang Y; Xiao K; Wang D; Peng Z; Luo R; Liu X; Hu L; Hu G ACS Synth Biol; 2024 Oct; 13(10):3378-3388. PubMed ID: 39267441 [TBL] [Abstract][Full Text] [Related]
32. Building Microbial Hosts for Heterologous Production of N-Methylpyrrolinium. Ping Y; Li X; Xu B; Wei W; Wei W; Kai G; Zhou Z; Xiao Y ACS Synth Biol; 2019 Feb; 8(2):257-263. PubMed ID: 30691267 [TBL] [Abstract][Full Text] [Related]
33. Deciphering the melatonin metabolism in Saccharomyces cerevisiae by the bioconversion of related metabolites. Muñiz-Calvo S; Bisquert R; Fernández-Cruz E; García-Parrilla MC; Guillamón JM J Pineal Res; 2019 Apr; 66(3):e12554. PubMed ID: 30633359 [TBL] [Abstract][Full Text] [Related]
34. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
35. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain. Zhao W; Hang B; Zhu X; Wang R; Shen M; Huang L; Xu Z J Biotechnol; 2016 Oct; 236():64-70. PubMed ID: 27510807 [TBL] [Abstract][Full Text] [Related]
36. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Baek SH; Kwon EY; Kim YH; Hahn JS Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574 [TBL] [Abstract][Full Text] [Related]
37. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
38. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Borodina I; Nielsen J Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744 [TBL] [Abstract][Full Text] [Related]
39. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Lee HJ; Shin DJ; Nho SB; Lee KW; Kim SK Biotechnol J; 2024 Oct; 19(10):e202400351. PubMed ID: 39380497 [TBL] [Abstract][Full Text] [Related]
40. Biosynthetic Pathways of Tryptophan Metabolites in Kung HC; Bui NH; Huang BW; Cheruiyot NK; Chang-Chien GP Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]