These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26710638)

  • 21. Defining fire environment zones in the boreal forests of northeastern China.
    Wu Z; He HS; Yang J; Liang Y
    Sci Total Environ; 2015 Jun; 518-519():106-16. PubMed ID: 25747370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.
    Erni S; Arseneault D; Parisien MA; Bégin Y
    Glob Chang Biol; 2017 Mar; 23(3):1152-1166. PubMed ID: 27514018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.
    Tautenhahn S; Lichstein JW; Jung M; Kattge J; Bohlman SA; Heilmeier H; Prokushkin A; Kahl A; Wirth C
    Glob Chang Biol; 2016 Jun; 22(6):2178-97. PubMed ID: 26649652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Lightning-caused fire, its affecting factors and prediction: a review].
    Zhang JL; Bi W; Wang XH; Wang ZB; Li DF
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2674-84. PubMed ID: 24417129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
    James PM; Robert LE; Wotton BM; Martell DL; Fleming RA
    Ecol Appl; 2017 Mar; 27(2):532-544. PubMed ID: 27809401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating Lightning-Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain.
    Rodríguez-Pérez JR; Ordóñez C; Roca-Pardiñas J; Vecín-Arias D; Castedo-Dorado F
    Risk Anal; 2020 Jul; 40(7):1418-1437. PubMed ID: 32347573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005.
    Parisien MA; Parks SA; Krawchuk MA; Flannigan MD; Bowman LM; Moritz MA
    Ecol Appl; 2011 Apr; 21(3):789-805. PubMed ID: 21639045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Dynamics of forest fire weather indices in Tahe County of Great Xing' an Mountains region, Heilongjiang Province].
    Di XY; Li YF; Sun J; Yang G
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1240-6. PubMed ID: 21812301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Changes of climate and fire dynamic in China vegetation zone during 1961-2010].
    Tian XR; Zhao FJ; Shu LF; Miao QL; Wang MY
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3279-86. PubMed ID: 25898627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.
    Zhang JH; Yao FM; Liu C; Yang LM; Boken VK
    Int J Environ Res Public Health; 2011 Aug; 8(8):3156-78. PubMed ID: 21909297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-scale controls on carbon emissions from boreal forest megafires.
    Walker XJ; Rogers BM; Baltzer JL; Cumming SG; Day NJ; Goetz SJ; Johnstone JF; Schuur EAG; Turetsky MR; Mack MC
    Glob Chang Biol; 2018 Sep; 24(9):4251-4265. PubMed ID: 29697169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.
    Dymond CC; Field RD; Roswintiarti O; Guswanto
    Environ Manage; 2005 Apr; 35(4):426-40. PubMed ID: 15902449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using SPOT satellite datasets.
    Vadrevu KP; Eaturu A; Badarinath KV
    Environ Monit Assess; 2006 Dec; 123(1-3):75-96. PubMed ID: 17054011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.
    Wu Z; He HS; Liang Y; Cai L; Lewis BJ
    Environ Manage; 2013 Oct; 52(4):821-36. PubMed ID: 23887487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada.
    Köster E; Köster K; Berninger F; Aaltonen H; Zhou X; Pumpanen J
    Sci Total Environ; 2017 Dec; 601-602():895-905. PubMed ID: 28582735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lightning fires in a brazilian savanna national park: rethinking management strategies.
    Ramos-Neto MB; Pivello VR
    Environ Manage; 2000 Dec; 26(6):675-84. PubMed ID: 11029117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling forest fire occurrences using count-data mixed models in Qiannan autonomous prefecture of Guizhou province in China.
    Xiao Y; Zhang X; Ji P
    PLoS One; 2015; 10(3):e0120621. PubMed ID: 25790309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia.
    Burrell AL; Sun Q; Baxter R; Kukavskaya EA; Zhila S; Shestakova T; Rogers BM; Kaduk J; Barrett K
    Sci Total Environ; 2022 Jul; 831():154885. PubMed ID: 35358519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].
    Li XN; He HS; Wu ZW; Liang Y
    Ying Yong Sheng Tai Xue Bao; 2012 Dec; 23(12):3227-35. PubMed ID: 23479860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.
    Platt WJ; Orzell SL; Slocum MG
    PLoS One; 2015; 10(1):e0116952. PubMed ID: 25574667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.