These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 26711083)
1. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Pereira B; Li ZJ; De Mey M; Lim CG; Zhang H; Hoeltgen C; Stephanopoulos G Metab Eng; 2016 Mar; 34():80-87. PubMed ID: 26711083 [TBL] [Abstract][Full Text] [Related]
2. Engineering Escherichia coli for the utilization of ethylene glycol. Pandit AV; Harrison E; Mahadevan R Microb Cell Fact; 2021 Jan; 20(1):22. PubMed ID: 33482812 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli. Wang Y; Xian M; Feng X; Liu M; Zhao G Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993 [TBL] [Abstract][Full Text] [Related]
4. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Salusjärvi L; Toivari M; Vehkomäki ML; Koivistoinen O; Mojzita D; Niemelä K; Penttilä M; Ruohonen L Appl Microbiol Biotechnol; 2017 Nov; 101(22):8151-8163. PubMed ID: 29038973 [TBL] [Abstract][Full Text] [Related]
5. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Salusjärvi L; Havukainen S; Koivistoinen O; Toivari M Appl Microbiol Biotechnol; 2019 Mar; 103(6):2525-2535. PubMed ID: 30707252 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of ethylene glycol in Escherichia coli. Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Lee WK; Chung WJ Appl Microbiol Biotechnol; 2013 Apr; 97(8):3409-17. PubMed ID: 23233208 [TBL] [Abstract][Full Text] [Related]
7. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Cabulong RB; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Lee CR; Chung WJ Enzyme Microb Technol; 2017 Feb; 97():11-20. PubMed ID: 28010767 [TBL] [Abstract][Full Text] [Related]
8. Ethylene glycol and glycolic acid production by wild-type Escherichia coli. Lu X; Yao Y; Yang Y; Zhang Z; Gu J; Mojovic L; Knezevic-Jugovic Z; Baganz F; Lye G; Shi J; Hao J Biotechnol Appl Biochem; 2021 Aug; 68(4):744-755. PubMed ID: 32683722 [TBL] [Abstract][Full Text] [Related]
9. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562 [TBL] [Abstract][Full Text] [Related]
10. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Alkim C; Cam Y; Trichez D; Auriol C; Spina L; Vax A; Bartolo F; Besse P; François JM; Walther T Microb Cell Fact; 2015 Sep; 14():127. PubMed ID: 26336892 [TBL] [Abstract][Full Text] [Related]
11. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Pereira B; Zhang H; De Mey M; Lim CG; Li ZJ; Stephanopoulos G Biotechnol Bioeng; 2016 Feb; 113(2):376-83. PubMed ID: 26221864 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli. Liu M; Ding Y; Xian M; Zhao G Microb Cell Fact; 2018 Mar; 17(1):51. PubMed ID: 29592804 [TBL] [Abstract][Full Text] [Related]
13. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
14. Valorization of single-carbon chemicals by using carboligases as key enzymes. Cheon H; Kim JH; Kim JS; Park JB Curr Opin Biotechnol; 2024 Feb; 85():103047. PubMed ID: 38128199 [TBL] [Abstract][Full Text] [Related]
15. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose. Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Kogure T; Kubota T; Suda M; Hiraga K; Inui M Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883 [TBL] [Abstract][Full Text] [Related]
17. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Zhan T; Chen Q; Zhang C; Bi C; Zhang X ACS Synth Biol; 2020 Sep; 9(9):2600-2609. PubMed ID: 32794740 [TBL] [Abstract][Full Text] [Related]
18. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals. Cam Y; Alkim C; Trichez D; Trebosc V; Vax A; Bartolo F; Besse P; François JM; Walther T ACS Synth Biol; 2016 Jul; 5(7):607-18. PubMed ID: 26186096 [TBL] [Abstract][Full Text] [Related]
19. Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli. Choi SY; Kim WJ; Yu SJ; Park SJ; Im SG; Lee SY Microb Biotechnol; 2017 Nov; 10(6):1353-1364. PubMed ID: 28425205 [TBL] [Abstract][Full Text] [Related]