These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26711115)

  • 41. Accurate path integration in continuous attractor network models of grid cells.
    Burak Y; Fiete IR
    PLoS Comput Biol; 2009 Feb; 5(2):e1000291. PubMed ID: 19229307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex.
    Holmgren C; Harkany T; Svennenfors B; Zilberter Y
    J Physiol; 2003 Aug; 551(Pt 1):139-53. PubMed ID: 12813147
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Excitation-Inhibition Dynamics Regulate Activity Transmission Through the Perirhinal-Entorhinal Network.
    Willems JGP; Wadman WJ; Cappaert NLM
    Neuroscience; 2019 Jul; 411():222-236. PubMed ID: 31132396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The emergence of grid cells: Intelligent design or just adaptation?
    Kropff E; Treves A
    Hippocampus; 2008; 18(12):1256-69. PubMed ID: 19021261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anterior Thalamic Excitation and Feedforward Inhibition of Presubicular Neurons Projecting to Medial Entorhinal Cortex.
    Nassar M; Simonnet J; Huang LW; Mathon B; Cohen I; Bendels MHK; Beraneck M; Miles R; Fricker D
    J Neurosci; 2018 Jul; 38(28):6411-6425. PubMed ID: 29921712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex.
    Canto CB; Witter MP
    Hippocampus; 2012 Jun; 22(6):1256-76. PubMed ID: 22162008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons.
    Scholl B; Pattadkal JJ; Dilly GA; Priebe NJ; Zemelman BV
    Neuron; 2015 Jul; 87(2):424-36. PubMed ID: 26182423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An isomorphic mapping hypothesis of the grid representation.
    Brecht M; Ray S; Burgalossi A; Tang Q; Schmidt H; Naumann R
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120521. PubMed ID: 24366133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections.
    Justus D; Dalügge D; Bothe S; Fuhrmann F; Hannes C; Kaneko H; Friedrichs D; Sosulina L; Schwarz I; Elliott DA; Schoch S; Bradke F; Schwarz MK; Remy S
    Nat Neurosci; 2017 Jan; 20(1):16-19. PubMed ID: 27893726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Grid cells in mice.
    Fyhn M; Hafting T; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1230-8. PubMed ID: 18683845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex.
    Leitner FC; Melzer S; Lütcke H; Pinna R; Seeburg PH; Helmchen F; Monyer H
    Nat Neurosci; 2016 Jul; 19(7):935-44. PubMed ID: 27182817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlations and functional connections in a population of grid cells.
    Dunn B; Mørreaunet M; Roudi Y
    PLoS Comput Biol; 2015 Feb; 11(2):e1004052. PubMed ID: 25714908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.
    Viney TJ; Salib M; Joshi A; Unal G; Berry N; Somogyi P
    Elife; 2018 Apr; 7():. PubMed ID: 29620525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells.
    Lee CT; Kao MH; Hou WH; Wei YT; Chen CL; Lien CC
    Sci Rep; 2016 Nov; 6():36885. PubMed ID: 27830729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple Running Speed Signals in Medial Entorhinal Cortex.
    Hinman JR; Brandon MP; Climer JR; Chapman GW; Hasselmo ME
    Neuron; 2016 Aug; 91(3):666-79. PubMed ID: 27427460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex.
    Desikan S; Koser DE; Neitz A; Monyer H
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2644-E2652. PubMed ID: 29487212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Grid cells: the position code, neural network models of activity, and the problem of learning.
    Welinder PE; Burak Y; Fiete IR
    Hippocampus; 2008; 18(12):1283-300. PubMed ID: 19021263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Grid cells require excitatory drive from the hippocampus.
    Bonnevie T; Dunn B; Fyhn M; Hafting T; Derdikman D; Kubie JL; Roudi Y; Moser EI; Moser MB
    Nat Neurosci; 2013 Mar; 16(3):309-17. PubMed ID: 23334581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Constraints on the synchronization of entorhinal cortex stellate cells.
    Crotty P; Lasker E; Cheng S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011908. PubMed ID: 23005453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.