These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26711187)

  • 41. Organic ligand induced release of vanadium from the dissolution of stone coal oxide ore.
    Hu X; Yue Y; Peng X
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):17891-17900. PubMed ID: 28971352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning.
    Vegliò F; Quaresima R; Fornari P; Ubaldini S
    Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction.
    Nazemi MK; Rashchi F
    Waste Manag Res; 2012 May; 30(5):492-7. PubMed ID: 21930525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recovery of high purity sulfuric acid from the waste acid in toluene nitration process by rectification.
    Song K; Meng Q; Shu F; Ye Z
    Chemosphere; 2013 Jan; 90(4):1558-62. PubMed ID: 23047120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.
    Nayaka GP; Pai KV; Manjanna J; Keny SJ
    Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Cu and Fe bioleaching in low-grade chalcopyrite and bioleaching mechanisms using Penicillium janthinellum strain GXCR].
    Zhou Y; Huang X; Huang G; Bai X; Tang X; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Nov; 24(11):1993-2002. PubMed ID: 19256351
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval.
    Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L
    Waste Manag; 2017 Feb; 60():706-715. PubMed ID: 27940079
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching.
    Zhang Y; Zhang TA; Dreisinger D; Lv C; Lv G; Zhang W
    J Hazard Mater; 2019 May; 369():632-641. PubMed ID: 30826556
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.
    Erust C; Akcil A
    Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.
    Ozgur C; Coskun S; Akcil A; Beyhan M; Üncü IS; Civelekoglu G
    Waste Manag; 2016 Nov; 57():215-219. PubMed ID: 27040091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study on the waste liquid crystal display treatment: focus on the resource recovery.
    Wang X; Lu X; Zhang S
    J Hazard Mater; 2013 Jan; 244-245():342-7. PubMed ID: 23274795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New Insights into the Penetration Depth of Sulfuric Acid and Leaching Effect in the Sulfuric Acid Curing-Leaching Process of Vanadium-Bearing Stone Coal.
    Li H; Han Y; Jin J; Zhou Z
    ACS Omega; 2021 Jul; 6(27):17599-17608. PubMed ID: 34278145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recovery of H2SO4 from an acid leach solution by diffusion dialysis.
    Wei C; Li X; Deng Z; Fan G; Li M; Li C
    J Hazard Mater; 2010 Apr; 176(1-3):226-30. PubMed ID: 19945217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leaching with mixed organic acids and sulfuric acid to recover cobalt and lithium from lithium ion batteries.
    Urias PM; Dos Reis Menêzes LH; Cardoso VL; de Resende MM; de Souza Ferreira J
    Environ Technol; 2021 Nov; 42(25):4027-4037. PubMed ID: 32431249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes--simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration.
    Tongwen X; Weihua Y
    J Hazard Mater; 2004 Jun; 109(1-3):157-64. PubMed ID: 15177755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.
    Calgaro CO; Schlemmer DF; da Silva MD; Maziero EV; Tanabe EH; Bertuol DA
    Waste Manag; 2015 Nov; 45():289-97. PubMed ID: 26022338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.