BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26711660)

  • 1. On the generation of OH(·) radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation.
    Prosdocimi T; De Gioia L; Zampella G; Bertini L
    J Biol Inorg Chem; 2016 Apr; 21(2):197-212. PubMed ID: 26711660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease.
    La Penna G; Hureau C; Andreussi O; Faller P
    J Phys Chem B; 2013 Dec; 117(51):16455-67. PubMed ID: 24313818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the propagation of the OH radical produced by Cu-amyloid beta peptide model complexes. Insight from molecular modelling.
    Arrigoni F; Rizza F; Tisi R; De Gioia L; Zampella G; Bertini L
    Metallomics; 2020 Nov; 12(11):1765-1780. PubMed ID: 33052996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling.
    Arrigoni F; Prosdocimi T; Mollica L; De Gioia L; Zampella G; Bertini L
    Metallomics; 2018 Nov; 10(11):1618-1630. PubMed ID: 30345437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing a reactive state of amyloid aggregates: NMR-based characterization of copper-bound Alzheimer disease amyloid β-fibrils in a redox cycle.
    Parthasarathy S; Yoo B; McElheny D; Tay W; Ishii Y
    J Biol Chem; 2014 Apr; 289(14):9998-10010. PubMed ID: 24523414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside-5'-phosphorothioate analogues are biocompatible antioxidants dissolving efficiently amyloid beta-metal ion aggregates.
    Amir A; Shmuel E; Zagalsky R; Sayer AH; Nadel Y; Fischer B
    Dalton Trans; 2012 Jul; 41(28):8539-49. PubMed ID: 22652964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free Superoxide is an Intermediate in the Production of H2O2 by Copper(I)-Aβ Peptide and O2.
    Reybier K; Ayala S; Alies B; Rodrigues JV; Bustos Rodriguez S; La Penna G; Collin F; Gomes CM; Hureau C; Faller P
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1085-9. PubMed ID: 26629876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent kinetics of copper ions binding to amyloid-β peptide.
    Bin Y; Chen S; Xiang J
    J Inorg Biochem; 2013 Feb; 119():21-7. PubMed ID: 23174653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer's disease.
    Raffa DF; Rickard GA; Rauk A
    J Biol Inorg Chem; 2007 Feb; 12(2):147-64. PubMed ID: 17013614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide.
    Summers KL; Schilling KM; Roseman G; Markham KA; Dolgova NV; Kroll T; Sokaras D; Millhauser GL; Pickering IJ; George GN
    Inorg Chem; 2019 May; 58(9):6294-6311. PubMed ID: 31013069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals.
    Nadal RC; Rigby SE; Viles JH
    Biochemistry; 2008 Nov; 47(44):11653-64. PubMed ID: 18847222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox chemistry of copper-amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state.
    Guilloreau L; Combalbert S; Sournia-Saquet A; Mazarguil H; Faller P
    Chembiochem; 2007 Jul; 8(11):1317-25. PubMed ID: 17577900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling copper binding to the amyloid-β peptide at different pH: toward a molecular mechanism for Cu reduction.
    Furlan S; Hureau C; Faller P; La Penna G
    J Phys Chem B; 2012 Oct; 116(39):11899-910. PubMed ID: 22974015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance.
    Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F
    Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox cycling of copper-amyloid β 1-16 peptide complexes is highly dependent on the coordination mode.
    Trujano-Ortiz LG; González FJ; Quintanar L
    Inorg Chem; 2015 Jan; 54(1):4-6. PubMed ID: 25521160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the oxygen-based ligand of the low pH component of the Cu(2+)-amyloid-β complex.
    Gomez-Castro CZ; Vela A; Quintanar L; Grande-Aztatzi R; Mineva T; Goursot A
    J Phys Chem B; 2014 Aug; 118(34):10052-64. PubMed ID: 25090035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histidine availability is decisive in ROS-mediated cytotoxicity of copper complexes of Aβ1-16 peptide.
    Ginotra YP; Ramteke SN; Walke GR; Rapole S; Kulkarni PP
    Free Radic Res; 2016; 50(4):405-13. PubMed ID: 26690929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide.
    Multhaup G; Ruppert T; Schlicksupp A; Hesse L; Bill E; Pipkorn R; Masters CL; Beyreuther K
    Biochemistry; 1998 May; 37(20):7224-30. PubMed ID: 9585534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive study on the generation of reactive oxygen species in Cu-Aβ-catalyzed redox processes.
    Huang H; Lou X; Hu B; Zhou Z; Chen J; Tian Y
    Free Radic Biol Med; 2019 May; 135():125-131. PubMed ID: 30849487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical.
    Dikalov SI; Vitek MP; Mason RP
    Free Radic Biol Med; 2004 Feb; 36(3):340-7. PubMed ID: 15036353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.