These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 26711660)
1. On the generation of OH(·) radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. Prosdocimi T; De Gioia L; Zampella G; Bertini L J Biol Inorg Chem; 2016 Apr; 21(2):197-212. PubMed ID: 26711660 [TBL] [Abstract][Full Text] [Related]
2. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease. La Penna G; Hureau C; Andreussi O; Faller P J Phys Chem B; 2013 Dec; 117(51):16455-67. PubMed ID: 24313818 [TBL] [Abstract][Full Text] [Related]
3. On the propagation of the OH radical produced by Cu-amyloid beta peptide model complexes. Insight from molecular modelling. Arrigoni F; Rizza F; Tisi R; De Gioia L; Zampella G; Bertini L Metallomics; 2020 Nov; 12(11):1765-1780. PubMed ID: 33052996 [TBL] [Abstract][Full Text] [Related]
4. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling. Arrigoni F; Prosdocimi T; Mollica L; De Gioia L; Zampella G; Bertini L Metallomics; 2018 Nov; 10(11):1618-1630. PubMed ID: 30345437 [TBL] [Abstract][Full Text] [Related]
5. Capturing a reactive state of amyloid aggregates: NMR-based characterization of copper-bound Alzheimer disease amyloid β-fibrils in a redox cycle. Parthasarathy S; Yoo B; McElheny D; Tay W; Ishii Y J Biol Chem; 2014 Apr; 289(14):9998-10010. PubMed ID: 24523414 [TBL] [Abstract][Full Text] [Related]
6. Nucleoside-5'-phosphorothioate analogues are biocompatible antioxidants dissolving efficiently amyloid beta-metal ion aggregates. Amir A; Shmuel E; Zagalsky R; Sayer AH; Nadel Y; Fischer B Dalton Trans; 2012 Jul; 41(28):8539-49. PubMed ID: 22652964 [TBL] [Abstract][Full Text] [Related]
7. Free Superoxide is an Intermediate in the Production of H2O2 by Copper(I)-Aβ Peptide and O2. Reybier K; Ayala S; Alies B; Rodrigues JV; Bustos Rodriguez S; La Penna G; Collin F; Gomes CM; Hureau C; Faller P Angew Chem Int Ed Engl; 2016 Jan; 55(3):1085-9. PubMed ID: 26629876 [TBL] [Abstract][Full Text] [Related]
8. pH-dependent kinetics of copper ions binding to amyloid-β peptide. Bin Y; Chen S; Xiang J J Inorg Biochem; 2013 Feb; 119():21-7. PubMed ID: 23174653 [TBL] [Abstract][Full Text] [Related]
9. Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer's disease. Raffa DF; Rickard GA; Rauk A J Biol Inorg Chem; 2007 Feb; 12(2):147-64. PubMed ID: 17013614 [TBL] [Abstract][Full Text] [Related]
10. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Summers KL; Schilling KM; Roseman G; Markham KA; Dolgova NV; Kroll T; Sokaras D; Millhauser GL; Pickering IJ; George GN Inorg Chem; 2019 May; 58(9):6294-6311. PubMed ID: 31013069 [TBL] [Abstract][Full Text] [Related]
11. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals. Nadal RC; Rigby SE; Viles JH Biochemistry; 2008 Nov; 47(44):11653-64. PubMed ID: 18847222 [TBL] [Abstract][Full Text] [Related]
12. Redox chemistry of copper-amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state. Guilloreau L; Combalbert S; Sournia-Saquet A; Mazarguil H; Faller P Chembiochem; 2007 Jul; 8(11):1317-25. PubMed ID: 17577900 [TBL] [Abstract][Full Text] [Related]
13. Modeling copper binding to the amyloid-β peptide at different pH: toward a molecular mechanism for Cu reduction. Furlan S; Hureau C; Faller P; La Penna G J Phys Chem B; 2012 Oct; 116(39):11899-910. PubMed ID: 22974015 [TBL] [Abstract][Full Text] [Related]
14. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872 [TBL] [Abstract][Full Text] [Related]
15. Redox cycling of copper-amyloid β 1-16 peptide complexes is highly dependent on the coordination mode. Trujano-Ortiz LG; González FJ; Quintanar L Inorg Chem; 2015 Jan; 54(1):4-6. PubMed ID: 25521160 [TBL] [Abstract][Full Text] [Related]
16. Insights into the oxygen-based ligand of the low pH component of the Cu(2+)-amyloid-β complex. Gomez-Castro CZ; Vela A; Quintanar L; Grande-Aztatzi R; Mineva T; Goursot A J Phys Chem B; 2014 Aug; 118(34):10052-64. PubMed ID: 25090035 [TBL] [Abstract][Full Text] [Related]
17. Histidine availability is decisive in ROS-mediated cytotoxicity of copper complexes of Aβ1-16 peptide. Ginotra YP; Ramteke SN; Walke GR; Rapole S; Kulkarni PP Free Radic Res; 2016; 50(4):405-13. PubMed ID: 26690929 [TBL] [Abstract][Full Text] [Related]
18. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Multhaup G; Ruppert T; Schlicksupp A; Hesse L; Bill E; Pipkorn R; Masters CL; Beyreuther K Biochemistry; 1998 May; 37(20):7224-30. PubMed ID: 9585534 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive study on the generation of reactive oxygen species in Cu-Aβ-catalyzed redox processes. Huang H; Lou X; Hu B; Zhou Z; Chen J; Tian Y Free Radic Biol Med; 2019 May; 135():125-131. PubMed ID: 30849487 [TBL] [Abstract][Full Text] [Related]
20. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Dikalov SI; Vitek MP; Mason RP Free Radic Biol Med; 2004 Feb; 36(3):340-7. PubMed ID: 15036353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]