These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26711865)

  • 41. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies.
    Baratta W; Baldino S; Calhorda MJ; Costa PJ; Esposito G; Herdtweck E; Magnolia S; Mealli C; Messaoudi A; Mason SA; Veiros LF
    Chemistry; 2014 Oct; 20(42):13603-17. PubMed ID: 25195979
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dinitrogen Activation and Hydrogenation by C
    Shima T; Yang J; Luo G; Luo Y; Hou Z
    J Am Chem Soc; 2020 May; 142(19):9007-9016. PubMed ID: 32302473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A theoretical study on the hydrogenation of CO
    Zhou Y; Zhao Y; Shi X; Tang Y; Yang Z; Pu M; Lei M
    Dalton Trans; 2022 Jul; 51(26):10020-10028. PubMed ID: 35703402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Equilibrium thermodynamics to form a rhodium formyl complex from reactions of CO and H2: metal σ donor activation of CO.
    Imler GH; Zdilla MJ; Wayland BB
    J Am Chem Soc; 2014 Apr; 136(16):5856-9. PubMed ID: 24724571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature and Solvent Effects on H
    Hu J; Bruch QJ; Miller AJM
    J Am Chem Soc; 2021 Jan; 143(2):945-954. PubMed ID: 33383987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bis(diisopropylphosphino)pyridine iron dicarbonyl, dihydride, and silyl hydride complexes.
    Trovitch RJ; Lobkovsky E; Chirik PJ
    Inorg Chem; 2006 Sep; 45(18):7252-60. PubMed ID: 16933926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study.
    Blacque O; Frech CM
    Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.
    Hernández-Juárez M; López-Serrano J; Lara P; Morales-Cerón JP; Vaquero M; Álvarez E; Salazar V; Suárez A
    Chemistry; 2015 May; 21(20):7540-55. PubMed ID: 25820229
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics and thermodynamics of small molecule binding to pincer-PCP rhodium(I) complexes.
    Doherty MD; Grills DC; Huang KW; Muckerman JT; Polyansky DE; van Eldik R; Fujita E
    Inorg Chem; 2013 Apr; 52(8):4160-72. PubMed ID: 23541116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dinitrogen Activation by Dihydrogen and a PNP-Ligated Titanium Complex.
    Wang B; Luo G; Nishiura M; Hu S; Shima T; Luo Y; Hou Z
    J Am Chem Soc; 2017 Feb; 139(5):1818-1821. PubMed ID: 28134522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pincer Ligand Modifications To Tune the Activation Barrier for H2 Elimination in Water Splitting Milstein Catalyst.
    Sandhya KS; Remya GS; Suresh CH
    Inorg Chem; 2015 Dec; 54(23):11150-6. PubMed ID: 26575086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfonamido-phosphoramidite ligands in cooperative dinuclear hydrogenation catalysis.
    Patureau FW; de Boer S; Kuil M; Meeuwissen J; Breuil PA; Siegler MA; Spek AL; Sandee AJ; de Bruin B; Reek JN
    J Am Chem Soc; 2009 May; 131(19):6683-5. PubMed ID: 19397373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogenation of imines catalyzed by trisphosphine-substituted molybdenum and tungsten nitrosyl hydrides and co-catalytic acid.
    Chakraborty S; Blacque O; Fox T; Berke H
    Chem Asian J; 2014 Oct; 9(10):2896-907. PubMed ID: 25048293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluating molecular cobalt complexes for the conversion of N2 to NH3.
    Del Castillo TJ; Thompson NB; Suess DL; Ung G; Peters JC
    Inorg Chem; 2015 Oct; 54(19):9256-62. PubMed ID: 26001022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identifying the preferential pathways of CO
    Mandal SC; Pathak B
    Dalton Trans; 2021 Jul; 50(27):9598-9609. PubMed ID: 34160489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light Enhanced Fe-Mediated Nitrogen Fixation: Mechanistic Insights Regarding H
    Schild DJ; Peters JC
    ACS Catal; 2019 May; 9(5):4286-4295. PubMed ID: 31467770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rhodium-Catalyzed ON-OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand.
    Tang YP; Luo YE; Xiang JF; He YM; Fan QH
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202200638. PubMed ID: 35104023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.