These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26712301)

  • 1. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1254-65. PubMed ID: 26712301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the in situ mechanical behavior of ankle ligaments.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    J Mech Behav Biomed Mater; 2017 Jan; 65():502-512. PubMed ID: 27665085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-based modeling of in situ ankle ligaments with consideration of progressive failure.
    Nie B; Forman JL; Panzer MB; Mait AR; Donlon JP; Kent RW
    J Biomech; 2017 Aug; 61():102-110. PubMed ID: 28757236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time computational model for estimating kinematics of ankle ligaments.
    Zhang M; Davies TC; Zhang Y; Xie SQ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):835-44. PubMed ID: 26252861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling.
    Haraguchi N; Armiger RS; Myerson MS; Campbell JT; Chao EY
    Foot Ankle Int; 2009 Feb; 30(2):177-85. PubMed ID: 19254515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of population variability in ligament material properties on the mechanical behavior of ankle: a computational investigation.
    Liu Y; Zhou Q; Gan S; Nie B
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):43-53. PubMed ID: 31809575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical Analysis of the Individual Ligament Contributions to Syndesmotic Stability.
    Clanton TO; Williams BT; Backus JD; Dornan GJ; Liechti DJ; Whitlow SR; Saroki AJ; Turnbull TL; LaPrade RF
    Foot Ankle Int; 2017 Jan; 38(1):66-75. PubMed ID: 27681857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational model of the lower leg and foot/ankle complex: application to arch stability.
    Iaquinto JM; Wayne JS
    J Biomech Eng; 2010 Feb; 132(2):021009. PubMed ID: 20370246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation and forces of ankle ligaments in a physiological range of motion.
    Nigg BM; Skarvan G; Frank CB; Yeadon MR
    Foot Ankle; 1990 Aug; 11(1):30-40. PubMed ID: 2210531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Number of Segments Within Musculoskeletal Foot Models Influences Ankle Kinematics and Strains of Ligaments and Muscles.
    Kim H; Kipp K
    J Orthop Res; 2019 Oct; 37(10):2231-2240. PubMed ID: 31206865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching for the "sweet spot": the foot rotation and parallel engagement of ankle ligaments in maximizing injury tolerance.
    Nie B; Forman JL; Mait AR; Donlon JP; Panzer MB; Kent RW
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1937-1945. PubMed ID: 28634682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [ligament kinematics of the ankle joint. An experimental study].
    Bruns J; Rehder U
    Z Orthop Ihre Grenzgeb; 1993; 131(4):363-9. PubMed ID: 8212815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms.
    Di Gregorio R; Parenti-Castelli V; O'Connor JJ; Leardini A
    Med Biol Eng Comput; 2007 Mar; 45(3):305-13. PubMed ID: 17295023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biomechanics of the ankle joint].
    Zwipp H
    Unfallchirurg; 1989 Mar; 92(3):98-102. PubMed ID: 2652302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex.
    Ozeki S; Kitaoka H; Uchiyama E; Luo ZP; Kaufman K; An KN
    Foot Ankle Int; 2006 Nov; 27(11):965-9. PubMed ID: 17144961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of nonanatomic tenodesis reconstruction methods of combined anterior talofibular ligament and calcaneofibular ligament deficiency.
    Zhang MY; Xu C; Li KH
    Foot Ankle Int; 2011 Oct; 32(10):1000-8. PubMed ID: 22224330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex.
    Cheung JT; Zhang M; An KN
    Clin Biomech (Bristol); 2004 Oct; 19(8):839-46. PubMed ID: 15342156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a personalized ligament-constraining discrete element framework for computing ankle joint contact mechanics.
    Peiffer M; Duquesne K; Van Oevelen A; Burssens A; De Mits S; Maas SA; Atkins PR; Anderson AE; Audenaert EA
    Comput Methods Programs Biomed; 2023 Apr; 231():107366. PubMed ID: 36720186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foot characteristics in association with inversion ankle injury.
    Morrison KE; Kaminski TW
    J Athl Train; 2007; 42(1):135-42. PubMed ID: 17597955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.