These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26712322)
1. Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering. Brady MA; Talvard L; Vella A; Ethier CR J Tissue Eng Regen Med; 2017 Apr; 11(4):1298-1302. PubMed ID: 26712322 [TBL] [Abstract][Full Text] [Related]
2. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. Girão AF; Semitela Â; Pereira AL; Completo A; Marques PAAP J Mater Sci Mater Med; 2020 Jul; 31(8):69. PubMed ID: 32705408 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: An in vitro study. Mohan N; Wilson J; Joseph D; Vaikkath D; Nair PD J Biomed Mater Res A; 2015 Dec; 103(12):3896-906. PubMed ID: 26014103 [TBL] [Abstract][Full Text] [Related]
4. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering. Chameettachal S; Murab S; Vaid R; Midha S; Ghosh S J Tissue Eng Regen Med; 2017 Apr; 11(4):1212-1229. PubMed ID: 25846347 [TBL] [Abstract][Full Text] [Related]
5. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Chen CH; Shyu VB; Chen JP; Lee MY Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. Ehrlich H; Steck E; Ilan M; Maldonado M; Muricy G; Bavestrello G; Kljajic Z; Carballo JL; Schiaparelli S; Ereskovsky A; Schupp P; Born R; Worch H; Bazhenov VV; Kurek D; Varlamov V; Vyalikh D; Kummer K; Sivkov VV; Molodtsov SL; Meissner H; Richter G; Hunoldt S; Kammer M; Paasch S; Krasokhin V; Patzke G; Brunner E; Richter W Int J Biol Macromol; 2010 Aug; 47(2):141-5. PubMed ID: 20478334 [TBL] [Abstract][Full Text] [Related]
7. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920 [TBL] [Abstract][Full Text] [Related]
8. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. Arora A; Kothari A; Katti DS J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472 [TBL] [Abstract][Full Text] [Related]
9. Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Zhu Y; Wan Y; Zhang J; Yin D; Cheng W Colloids Surf B Biointerfaces; 2014 Jan; 113():352-60. PubMed ID: 24121078 [TBL] [Abstract][Full Text] [Related]
10. Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. Tan H; Gong Y; Lao L; Mao Z; Gao C J Mater Sci Mater Med; 2007 Oct; 18(10):1961-8. PubMed ID: 17554603 [TBL] [Abstract][Full Text] [Related]
11. A biomimetic honeycomb-like scaffold prepared by flow-focusing technology for cartilage regeneration. Wang CC; Yang KC; Lin KH; Wu CC; Liu YL; Lin FH; Chen IH Biotechnol Bioeng; 2014 Nov; 111(11):2338-48. PubMed ID: 24895237 [TBL] [Abstract][Full Text] [Related]
12. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry. Oseni AO; Butler PE; Seifalian AM J Tissue Eng Regen Med; 2015 Nov; 9(11):E27-38. PubMed ID: 23576328 [TBL] [Abstract][Full Text] [Related]
13. Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. Ding X; Zhu M; Xu B; Zhang J; Zhao Y; Ji S; Wang L; Wang L; Li X; Kong D; Ma X; Yang Q ACS Appl Mater Interfaces; 2014 Oct; 6(19):16696-705. PubMed ID: 25210952 [TBL] [Abstract][Full Text] [Related]
14. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Kemppainen JM; Hollister SJ J Biomed Mater Res A; 2010 Jul; 94(1):9-18. PubMed ID: 20091702 [TBL] [Abstract][Full Text] [Related]
15. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Subramanian A; Lin HY; Vu D; Larsen G Biomed Sci Instrum; 2004; 40():117-22. PubMed ID: 15133945 [TBL] [Abstract][Full Text] [Related]
17. The microscopic biological response of human chondrocytes to bovine bone scaffold. Abdullah B; Shibghatullah AH; Hamid SS; Omar NS; Samsuddin AR Cell Tissue Bank; 2009 Aug; 10(3):205-13. PubMed ID: 18975136 [TBL] [Abstract][Full Text] [Related]
18. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering. Lee MY; Tsai WW; Chen HJ; Chen JP; Chen CH; Yeh WL; An J Biomed Mater Eng; 2013; 23(6):533-43. PubMed ID: 24165555 [TBL] [Abstract][Full Text] [Related]
19. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
20. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering. Järvinen E; Muhonen V; Haaparanta AM; Kellomäki M; Kiviranta I Biomed Mater Eng; 2014; 24(3):1549-53. PubMed ID: 24840193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]