These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 26712505)
21. Global analysis of expression profiles of rice receptor-like kinase genes. Gao LL; Xue HW Mol Plant; 2012 Jan; 5(1):143-53. PubMed ID: 21765177 [TBL] [Abstract][Full Text] [Related]
22. Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. Rameneni JJ; Lee Y; Dhandapani V; Yu X; Choi SR; Oh MH; Lim YP PLoS One; 2015; 10(11):e0142255. PubMed ID: 26588465 [TBL] [Abstract][Full Text] [Related]
23. Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana. Xun Q; Wu Y; Li H; Chang J; Ou Y; He K; Gou X; Tax FE; Li J New Phytol; 2020 Aug; 227(4):1157-1173. PubMed ID: 32278327 [TBL] [Abstract][Full Text] [Related]
24. Biochemical Analysis of the Role of Leucine-Rich Repeat Receptor-Like Kinases and the Carboxy-Terminus of Receptor Kinases in Regulating Kinase Activity in Arabidopsis thaliana and Brassica oleracea. Oh ES; Lee Y; Chae WB; Rameneni JJ; Park YS; Lim YP; Oh MH Molecules; 2018 Jan; 23(1):. PubMed ID: 29361797 [TBL] [Abstract][Full Text] [Related]
25. RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Silva JCF; Ferreira MA; Carvalho TFM; Silva FF; de A Silveira S; Brommonschenkel SH; Fontes EPB Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293031 [TBL] [Abstract][Full Text] [Related]
26. Ectopic expression of TAPETUM DETERMINANT1 affects ovule development in Arabidopsis. Huang J; Wijeratne AJ; Tang C; Zhang T; Fenelon RE; Owen HA; Zhao D J Exp Bot; 2016 Mar; 67(5):1311-26. PubMed ID: 26685185 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. Sun J; Li L; Wang P; Zhang S; Wu J BMC Genomics; 2017 Oct; 18(1):763. PubMed ID: 29017442 [TBL] [Abstract][Full Text] [Related]
28. Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense. Mu Z; Xu M; Manda T; Chen J; Yang L; Hwarari D BMC Genomics; 2024 Jul; 25(1):748. PubMed ID: 39085785 [TBL] [Abstract][Full Text] [Related]
29. Genome-Wide Identification of LRR-RLK Family in Cheng W; Wang Z; Xu F; Ahmad W; Lu G; Su Y; Xu L Curr Issues Mol Biol; 2021 Oct; 43(3):1632-1651. PubMed ID: 34698114 [TBL] [Abstract][Full Text] [Related]
30. Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. Park S; Moon JC; Park YC; Kim JH; Kim DS; Jang CS J Plant Physiol; 2014 Nov; 171(17):1645-53. PubMed ID: 25173451 [TBL] [Abstract][Full Text] [Related]
31. The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. Wang J; Kucukoglu M; Zhang L; Chen P; Decker D; Nilsson O; Jones B; Sandberg G; Zheng B BMC Plant Biol; 2013 Jul; 13():94. PubMed ID: 23815750 [TBL] [Abstract][Full Text] [Related]
32. MOL1 is required for cambium homeostasis in Arabidopsis. Gursanscky NR; Jouannet V; Grünwald K; Sanchez P; Laaber-Schwarz M; Greb T Plant J; 2016 May; 86(3):210-20. PubMed ID: 26991973 [TBL] [Abstract][Full Text] [Related]
33. Kinase domain-targeted isolation of defense-related receptor-like kinases (RLK/Pelle) in Platanus×acerifolia: phylogenetic and structural analysis. Pilotti M; Brunetti A; Uva P; Lumia V; Tizzani L; Gervasi F; Iacono M; Pindo M BMC Res Notes; 2014 Dec; 7():884. PubMed ID: 25486898 [TBL] [Abstract][Full Text] [Related]
34. Genome-Wide Characterization, Evolution, and Expression Analysis of the Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Gene Family in Meng J; Yang J; Peng M; Liu X; He H Life (Basel); 2020 Sep; 10(9):. PubMed ID: 32899802 [TBL] [Abstract][Full Text] [Related]
35. Two for all: receptor-associated kinases SOBIR1 and BAK1. Liebrand TW; van den Burg HA; Joosten MH Trends Plant Sci; 2014 Feb; 19(2):123-32. PubMed ID: 24238702 [TBL] [Abstract][Full Text] [Related]
36. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Kemmerling B; Halter T; Mazzotta S; Mosher S; Nürnberger T Front Plant Sci; 2011; 2():88. PubMed ID: 22645555 [TBL] [Abstract][Full Text] [Related]
37. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. Eyüboglu B; Pfister K; Haberer G; Chevalier D; Fuchs A; Mayer KF; Schneitz K BMC Plant Biol; 2007 Mar; 7():16. PubMed ID: 17397538 [TBL] [Abstract][Full Text] [Related]
38. Duplication and Divergence of Leucine-Rich Repeat Receptor-Like Protein Kinase ( Liu PL; Xie LL; Li PW; Mao JF; Liu H; Gao SM; Shi PH; Gong JQ Front Plant Sci; 2016; 7():1952. PubMed ID: 28066499 [TBL] [Abstract][Full Text] [Related]
39. Structure and evolution analysis of pollen receptor-like kinase in Zea mays and Arabidopsis thaliana. Wang D; Wang H; Irfan M; Fan M; Lin F Comput Biol Chem; 2014 Aug; 51():63-70. PubMed ID: 25016159 [TBL] [Abstract][Full Text] [Related]
40. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. Sakamoto T; Deguchi M; Brustolini OJ; Santos AA; Silva FF; Fontes EP BMC Plant Biol; 2012 Dec; 12():229. PubMed ID: 23198823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]